Chapter 8: Problem 14
Consider laminar forced convection in a circular tube. Will the heat flux be higher near the inlet of the tube or near the exit? Why?
Chapter 8: Problem 14
Consider laminar forced convection in a circular tube. Will the heat flux be higher near the inlet of the tube or near the exit? Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeLiquid water enters a 10 -m-long smooth rectangular tube with $a=50 \mathrm{~mm}\( and \)b=25 \mathrm{~mm}$. The surface temperature is kept constant, and water enters the tube at \(20^{\circ} \mathrm{C}\) with a mass flow rate of \(0.25 \mathrm{~kg} / \mathrm{s}\). Determine the tube surface temperature necessary to heat the water to the desired outlet temperature of \(80^{\circ} \mathrm{C}\).
In a heating system, liquid water flows in a circuof \(12.5 \mathrm{~mm}\). The water enters the tube at \(15^{\circ} \mathrm{C}\), where it is heated at a rate of \(1.5 \mathrm{~kW}\). The tube surface is maintained at a constant temperature. The flow is laminar, and it experiences a pressure loss of $5 \mathrm{~Pa}$ in the tube. According to the service restrictions of the ASME Boiler and Pressure Vessel Code (ASME BPVC.IV-2015, HG-101), hot water heaters should not be operating at temperatures exceeding \(120^{\circ} \mathrm{C}\) at or near the heater outlet. The tube's inner surface is lined with polyvinylidene fluoride (PVDF) lining. According to the ASME Code for Process Piping (ASME B31.3-2014, Table A323.4.3), the recommended maximum temperature for PVDF lining is \(135^{\circ} \mathrm{C}\). To comply with both ASME codes, determine (a) whether the water exiting the tube is at a temperature below \(120^{\circ} \mathrm{C}\), and (b) whether the inner surface temperature of the tube exceeds \(135^{\circ} \mathrm{C}\). Evaluate the fluid properties at \(80^{\circ} \mathrm{C}\). Is this an appropriate temperature at which to evaluate the fluid properties?
Liquid water flows in a circular tube at a mass flow rate of $0.12 \mathrm{~kg} / \mathrm{s}\(. The water enters the tube at \)65^{\circ} \mathrm{C}\(, where it is heated at a rate of \)5.5 \mathrm{~kW}$. The tube is circular with a length of \(3 \mathrm{~m}\) and an inner diameter of $25 \mathrm{~mm}$. The tube surface is maintained isothermal. The inner surface of the tube is lined with polyvinylidene chloride (PVDC) lining. The recommended maximum temperature for PVDC lining is \(79^{\circ} \mathrm{C}\) (ASME Code for Process Piping, ASME B31.3-2014, Table A323.4.3). Is the PVDC lining suitable for the tube under these conditions? Evaluate the fluid properties at \(70^{\circ} \mathrm{C}\). Is this an appropriate temperature at which to evaluate the fluid properties?
Water enters a 2-cm-diameter and 3-m-long tube whose walls are maintained at \(100^{\circ} \mathrm{C}\) with a bulk temperature of \(25^{\circ} \mathrm{C}\) and a volume flow rate of \(3 \mathrm{~m}^{3} / \mathrm{h}\). Neglecting the entrance effects and assuming turbulent flow, the Nusselt number can be determined from \(\mathrm{Nu}=0.023 \mathrm{Re}^{0.8} \mathrm{Pr}^{0.4}\). The convection heat transfer coefficient in this case is (a) \(4140 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (b) \(6160 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (c) \(8180 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (d) \(9410 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (e) \(2870 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (For water, use $k=0.610 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \operatorname{Pr}=6.0, \mu=9.0 \times\( \)10^{-4} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$.)
Consider a fluid with mean inlet temperature \(T_{i}\) flowing through a tube of diameter \(D\) and length \(L\), at a mass flow rate \(\dot{m}\). The tube is subjected to a surface heat flux that can be expressed as $\dot{q}_{s}(x)=a+b \sin (x \pi / L)\(, where \)a\( and \)b$ are constants. Determine an expression for the mean temperature of the fluid as a function of the \(x\)-coordinate.
What do you think about this solution?
We value your feedback to improve our textbook solutions.