Chapter 8: Problem 124
To cool a storehouse in the summer without using a conventional air- conditioning system, the owner decided to hire an engineer to design an alternative system that would make use of the water in the nearby lake. The engineer decided to flow air through a thin, smooth, 10 -cm-diameter copper tube that is submerged in the lake. The water in the lake is typically at a constant temperature of \(15^{\circ} \mathrm{C}\) and a convection heat transfer coefficient of \(1000 \mathrm{~W} / \mathrm{m}^{2}\). \(\mathrm{K}\). If air (1 atm) enters the copper tube at a mean temperature of \(30^{\circ} \mathrm{C}\) with an average velocity of \(2.5 \mathrm{~m} / \mathrm{s}\), determine the necessary copper tube length so that the outlet mean temperature of the air is \(20^{\circ} \mathrm{C}\).