Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How is the hydrodynamic entry length defined for flow in a tube? Is the entry length longer in laminar or turbulent flow?

Short Answer

Expert verified
Answer: Turbulent flow has a longer hydrodynamic entry length compared to laminar flow. This is because the chaotic and disordered motion of fluid particles in turbulent flow requires more distance to become fully developed than the smooth, parallel layers in laminar flow.

Step by step solution

01

Definition of Hydrodynamic Entry Length

Hydrodynamic entry length is the distance along the tube from the inlet where the flow becomes fully developed. In fully developed flow, the flow velocity profile doesn't change along the pipe, and the gradients in the axial direction cease to exist.
02

Laminar and Turbulent Flows

There are two types of flows in a pipe - laminar and turbulent. Laminar flow occurs when the fluid particles move in smooth, parallel layers due to low velocity, and there is no mixing between these layers. On the other hand, turbulent flow occurs when the fluid is moving at a high velocity, resulting in chaotic and disordered motion of fluid particles and significant mixing between the layers.
03

Laminar Entry Length

In laminar flow, the hydrodynamic entry length can be calculated using the following formula: \[L_{e_{laminar}}=0.05\cdot Re\cdot D\] where \(L_{e_{laminar}}\) is the entry length for laminar flow, \(Re\) is the Reynolds number, and \(D\) is the diameter of the tube.
04

Turbulent Entry Length

In turbulent flow, the hydrodynamic entry length can be calculated using the following formula: \[L_{e_{turbulent}}=4.4 \cdot (Re)^{1/6}\cdot D\] where \(L_{e_{turbulent}}\) is the entry length for turbulent flow, \(Re\) is the Reynolds number, and \(D\) is the diameter of the tube.
05

Comparing Entry Lengths in Laminar and Turbulent Flows

Typically, the entry length is longer for turbulent flow than for laminar flow because the chaotic and disordered motion of fluid particles in turbulent flow requires more distance to become fully developed, as compared to the smooth, parallel layers in laminar flow. By comparing the formulas for laminar and turbulent entry lengths, you can observe that the entry length in turbulent flow increases with the Reynolds number raised to the power of 1/6, whereas the entry length in laminar flow increases linearly with the Reynolds number.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Liquid water flows in fully developed conditions through a circular tube at a mass flow rate of \(3.5 \mathrm{~g} / \mathrm{s}\). The water enters the tube at \(5^{\circ} \mathrm{C}\), and the average convection heat transfer coefficient for the internal flow is $20 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\(. The tube is \)3 \mathrm{~m}$ long and has an inner diameter of \(25 \mathrm{~mm}\). The tube surface is subjected to a constant heat flux at a rate of \(300 \mathrm{~W}\). The inner surface of the tube is lined with polyvinylidene chloride (PVDC) lining. According to the ASME Code for Process Piping (ASME B31.3-2014, Table A323.4.3), the recommended maximum temperature for PVDC lining is \(79^{\circ} \mathrm{C}\). Would the inner surface temperature of the tube exceed the recommended maximum temperature for PVDC lining? If so, determine the axial location along the tube where the tube's inner surface temperature reaches $79^{\circ} \mathrm{C}\(. Evaluate the fluid properties at \)15^{\circ} \mathrm{C}$. Is this an appropriate temperature at which to evaluate the fluid properties?

In a heating system, liquid water flows in a circuof \(12.5 \mathrm{~mm}\). The water enters the tube at \(15^{\circ} \mathrm{C}\), where it is heated at a rate of \(1.5 \mathrm{~kW}\). The tube surface is maintained at a constant temperature. The flow is laminar, and it experiences a pressure loss of $5 \mathrm{~Pa}$ in the tube. According to the service restrictions of the ASME Boiler and Pressure Vessel Code (ASME BPVC.IV-2015, HG-101), hot water heaters should not be operating at temperatures exceeding \(120^{\circ} \mathrm{C}\) at or near the heater outlet. The tube's inner surface is lined with polyvinylidene fluoride (PVDF) lining. According to the ASME Code for Process Piping (ASME B31.3-2014, Table A323.4.3), the recommended maximum temperature for PVDF lining is \(135^{\circ} \mathrm{C}\). To comply with both ASME codes, determine (a) whether the water exiting the tube is at a temperature below \(120^{\circ} \mathrm{C}\), and (b) whether the inner surface temperature of the tube exceeds \(135^{\circ} \mathrm{C}\). Evaluate the fluid properties at \(80^{\circ} \mathrm{C}\). Is this an appropriate temperature at which to evaluate the fluid properties?

The exhaust gases of an automotive engine leave the combustion chamber and enter an 8 -ft-long and 3.5-in-diameter thin-walled steel exhaust pipe at \(800^{\circ} \mathrm{F}\) and \(15.5 \mathrm{psia}\) at a rate of $0.05 \mathrm{lbm} / \mathrm{s}$. The surrounding ambient air is at a temperature of \(80^{\circ} \mathrm{F}\), and the heat transfer coefficient on the outer surface of the exhaust pipe is $3 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2},{ }^{\circ} \mathrm{F}$. Assuming the exhaust gases to have the properties of air, determine \((a)\) the velocity of the exhaust gases at the inlet of the exhaust pipe and \((b)\) the temperature at which the exhaust gases will leave the pipe and enter the air.

Air enters a 7-cm-diameter and 4-m-long tube at \(65^{\circ} \mathrm{C}\) and leaves at \(15^{\circ} \mathrm{C}\). The tube is observed to be nearly isothermal at \(5^{\circ} \mathrm{C}\). If the average convection heat transfer coefficient is \(20 \mathrm{~W} / \mathrm{m}^{2},{ }^{\circ} \mathrm{C}\), the rate of heat transfer from the air is (a) \(491 \mathrm{~W}\) (b) \(616 \mathrm{~W}\) (c) \(810 \mathrm{~W}\) (d) \(907 \mathrm{~W}\) (e) \(975 \mathrm{~W}\)

Air at \(110^{\circ} \mathrm{C}\) enters an \(18-\mathrm{cm}\)-diameter and \(9-\mathrm{m}\)-long duct at a velocity of \(4.5 \mathrm{~m} / \mathrm{s}\). The duct is observed to be nearly isothermal at \(85^{\circ} \mathrm{C}\). The rate of heat loss from the air in the duct is (a) \(760 \mathrm{~W}\) (b) \(890 \mathrm{~W}\) (c) \(1210 \mathrm{~W}\) (d) \(1370 \mathrm{~W}\) (e) \(1400 \mathrm{~W}\) (For air, use $k=0.03095 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \operatorname{Pr}=0.7111, \nu=2.306 \times\( \)10^{-5} \mathrm{~m}^{2} / \mathrm{s}, c_{p}=1009 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free