Chapter 8: Problem 10
How is the hydrodynamic entry length defined for flow in a tube? Is the entry length longer in laminar or turbulent flow?
Chapter 8: Problem 10
How is the hydrodynamic entry length defined for flow in a tube? Is the entry length longer in laminar or turbulent flow?
All the tools & learning materials you need for study success - in one app.
Get started for freeLiquid water flows in fully developed conditions through a circular tube at a mass flow rate of \(3.5 \mathrm{~g} / \mathrm{s}\). The water enters the tube at \(5^{\circ} \mathrm{C}\), and the average convection heat transfer coefficient for the internal flow is $20 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\(. The tube is \)3 \mathrm{~m}$ long and has an inner diameter of \(25 \mathrm{~mm}\). The tube surface is subjected to a constant heat flux at a rate of \(300 \mathrm{~W}\). The inner surface of the tube is lined with polyvinylidene chloride (PVDC) lining. According to the ASME Code for Process Piping (ASME B31.3-2014, Table A323.4.3), the recommended maximum temperature for PVDC lining is \(79^{\circ} \mathrm{C}\). Would the inner surface temperature of the tube exceed the recommended maximum temperature for PVDC lining? If so, determine the axial location along the tube where the tube's inner surface temperature reaches $79^{\circ} \mathrm{C}\(. Evaluate the fluid properties at \)15^{\circ} \mathrm{C}$. Is this an appropriate temperature at which to evaluate the fluid properties?
In a heating system, liquid water flows in a circuof \(12.5 \mathrm{~mm}\). The water enters the tube at \(15^{\circ} \mathrm{C}\), where it is heated at a rate of \(1.5 \mathrm{~kW}\). The tube surface is maintained at a constant temperature. The flow is laminar, and it experiences a pressure loss of $5 \mathrm{~Pa}$ in the tube. According to the service restrictions of the ASME Boiler and Pressure Vessel Code (ASME BPVC.IV-2015, HG-101), hot water heaters should not be operating at temperatures exceeding \(120^{\circ} \mathrm{C}\) at or near the heater outlet. The tube's inner surface is lined with polyvinylidene fluoride (PVDF) lining. According to the ASME Code for Process Piping (ASME B31.3-2014, Table A323.4.3), the recommended maximum temperature for PVDF lining is \(135^{\circ} \mathrm{C}\). To comply with both ASME codes, determine (a) whether the water exiting the tube is at a temperature below \(120^{\circ} \mathrm{C}\), and (b) whether the inner surface temperature of the tube exceeds \(135^{\circ} \mathrm{C}\). Evaluate the fluid properties at \(80^{\circ} \mathrm{C}\). Is this an appropriate temperature at which to evaluate the fluid properties?
The exhaust gases of an automotive engine leave the combustion chamber and enter an 8 -ft-long and 3.5-in-diameter thin-walled steel exhaust pipe at \(800^{\circ} \mathrm{F}\) and \(15.5 \mathrm{psia}\) at a rate of $0.05 \mathrm{lbm} / \mathrm{s}$. The surrounding ambient air is at a temperature of \(80^{\circ} \mathrm{F}\), and the heat transfer coefficient on the outer surface of the exhaust pipe is $3 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2},{ }^{\circ} \mathrm{F}$. Assuming the exhaust gases to have the properties of air, determine \((a)\) the velocity of the exhaust gases at the inlet of the exhaust pipe and \((b)\) the temperature at which the exhaust gases will leave the pipe and enter the air.
Air enters a 7-cm-diameter and 4-m-long tube at \(65^{\circ} \mathrm{C}\) and leaves at \(15^{\circ} \mathrm{C}\). The tube is observed to be nearly isothermal at \(5^{\circ} \mathrm{C}\). If the average convection heat transfer coefficient is \(20 \mathrm{~W} / \mathrm{m}^{2},{ }^{\circ} \mathrm{C}\), the rate of heat transfer from the air is (a) \(491 \mathrm{~W}\) (b) \(616 \mathrm{~W}\) (c) \(810 \mathrm{~W}\) (d) \(907 \mathrm{~W}\) (e) \(975 \mathrm{~W}\)
Air at \(110^{\circ} \mathrm{C}\) enters an \(18-\mathrm{cm}\)-diameter and \(9-\mathrm{m}\)-long duct at a velocity of \(4.5 \mathrm{~m} / \mathrm{s}\). The duct is observed to be nearly isothermal at \(85^{\circ} \mathrm{C}\). The rate of heat loss from the air in the duct is (a) \(760 \mathrm{~W}\) (b) \(890 \mathrm{~W}\) (c) \(1210 \mathrm{~W}\) (d) \(1370 \mathrm{~W}\) (e) \(1400 \mathrm{~W}\) (For air, use $k=0.03095 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \operatorname{Pr}=0.7111, \nu=2.306 \times\( \)10^{-5} \mathrm{~m}^{2} / \mathrm{s}, c_{p}=1009 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.