Chapter 7: Problem 9
What is the effect of surface roughness on the friction drag coefficient in laminar and turbulent flows?
Chapter 7: Problem 9
What is the effect of surface roughness on the friction drag coefficient in laminar and turbulent flows?
All the tools & learning materials you need for study success - in one app.
Get started for freeEngine oil at \(105^{\circ} \mathrm{C}\) flows over the surface of a flat plate whose temperature is \(15^{\circ} \mathrm{C}\) with a velocity of $1.5 \mathrm{~m} / \mathrm{s}\(. The local drag force per unit surface area \)0.8 \mathrm{~m}$ from the leading edge of the plate is (a) \(21.8 \mathrm{~N} / \mathrm{m}^{2}\) (b) \(14.3 \mathrm{~N} / \mathrm{m}^{2}\) (c) \(10.9 \mathrm{~N} / \mathrm{m}^{2}\) (d) \(8.5 \mathrm{~N} / \mathrm{m}^{2}\) (e) \(5.5 \mathrm{~N} / \mathrm{m}^{2}\) (For oil, use $\nu=8.565 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}, \rho=864 \mathrm{~kg} / \mathrm{m}^{3}$ )
In flow over blunt bodies such as a cylinder, how does the pressure drag differ from the friction drag?
Hydrogen gas at \(1 \mathrm{~atm}\) is flowing in parallel over the upper and lower surfaces of a 3 -m-long flat plate at a velocity of $2.5 \mathrm{~m} / \mathrm{s}\(. The gas temperature is \)120^{\circ} \mathrm{C}$, and the surface temperature of the plate is maintained at \(30^{\circ} \mathrm{C}\). Using appropriate software, investigate the local convection heat transfer coefficient and the local total convection heat flux along the plate. By varying the location along the plate for \(0.2 \leq x \leq 3 \mathrm{~m}\), plot the local convection heat transfer coefficient and the local total convection heat flux as functions of \(x\). Assume flow is laminar, but make sure to verify this assumption.
Combustion air in a manufacturing facility is to be preheated before entering a furnace by hot water at \(90^{\circ} \mathrm{C}\) flowing through the tubes of a tube bank located in a duct. Air enters the duct at \(15^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\) with a mean velocity of \(4.5 \mathrm{~m} / \mathrm{s}\), and it flows over the tubes in the normal direction. The outer diameter of the tubes is \(2.2 \mathrm{~cm}\), and the tubes are arranged in-line with longitudinal and transverse pitches of \(S_{L}=S_{T}=5 \mathrm{~cm}\). There are eight rows in the flow direction with eight tubes in each row. Determine the rate of heat transfer per unit length of the tubes and the pressure drop across the tube bank. Evaluate the air properties at an assumed mean temperature of \(20^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\). Is this a good assumption?
Air at \(20^{\circ} \mathrm{C}\) flows over a 4-m-long and 3 -m-wide surface of a plate whose temperature is \(80^{\circ} \mathrm{C}\) with a velocity of $5 \mathrm{~m} / \mathrm{s}$. The rate of heat transfer from the surface is (a) \(7383 \mathrm{~W}\) (b) \(8985 \mathrm{~W}\) (c) \(11,231 \mathrm{~W}\) (d) 14,672 W (e) 20,402 W (For air, use $k=0.02735 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \operatorname{Pr}=0.7228, \nu=1.798 \times\( \)\left.10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)$
What do you think about this solution?
We value your feedback to improve our textbook solutions.