Chapter 7: Problem 4
During flow over a given body, the drag force, the upstream velocity, and the fluid density are measured. Explain how you would determine the drag coefficient. What area would you use in calculations?
Chapter 7: Problem 4
During flow over a given body, the drag force, the upstream velocity, and the fluid density are measured. Explain how you would determine the drag coefficient. What area would you use in calculations?
All the tools & learning materials you need for study success - in one app.
Get started for freeExposure to high concentration of gaseous ammonia can cause lung damage. To prevent gaseous ammonia from leaking out, ammonia is transported in its liquid state through a pipe \((k=25 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), $D_{i \text {, pipe }}=2.5 \mathrm{~cm}, D_{a \text {, pipe }}=4 \mathrm{~cm}$, and \(\left.L=10 \mathrm{~m}\right)\). Since liquid ammonia has a normal boiling point of \(-33.3^{\circ} \mathrm{C}\), the pipe needs to be properly insulated to prevent the surrounding heat from causing the ammonia to boil. The pipe is situated in a laboratory, where air at \(20^{\circ} \mathrm{C}\) is blowing across it with a velocity of \(7 \mathrm{~m} / \mathrm{s}\). The convection heat transfer coefficient of the liquid ammonia is $100 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Calculate the minimum insulation thickness for the pipe using a material with $k=0.75 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ to keep the liquid ammonia flowing at an average temperature of \(-35^{\circ} \mathrm{C}\), while maintaining the insulated pipe outer surface temperature at \(10^{\circ} \mathrm{C}\).
In cryogenic equipment, cold air flows in parallel over the surface of a \(2-\mathrm{m} \times 2-\mathrm{m}\) ASTM A240 \(410 \mathrm{~S}\) stainless steel plate. The air velocity is \(5 \mathrm{~m} / \mathrm{s}\) at a temperature of \(-70^{\circ} \mathrm{C}\). The minimum temperature suitable for the ASTM A240 \(410 \mathrm{~S}\) plate is \(-30^{\circ} \mathrm{C}\) (ASME Code for Process Piping, ASME B31.3-2014, Table A-1M). The plate is heated to keep its surface temperature from going below \(-30^{\circ} \mathrm{C}\). Determine the average heat transfer rate required to keep the plate surface from getting below the minimum suitable temperature.
A \(0.55\)-m-internal-diameter spherical tank made of 1 -cm-thick stainless steel \((k=15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) is used to store iced water at \(0^{\circ} \mathrm{C}\). The tank is located outdoors at $30^{\circ} \mathrm{C}\( and is subjected to winds at \)8 \mathrm{~km} / \mathrm{h}$. Assuming the entire steel tank to be at \(0^{\circ} \mathrm{C}\) and thus its thermal resistance to be negligible, determine \((a)\) the rate of heat transfer to the iced water in the tank and (b) the amount of ice at $0^{\circ} \mathrm{C}\( that melts during a \)24-\mathrm{h}$ period. The heat of fusion of water at atmospheric pressure is \(h_{i f}=333.7 \mathrm{~kJ} / \mathrm{kg}\). Disregard any heat transfer by radiation.
Oil at \(60^{\circ} \mathrm{C}\) flows at a velocity of $20 \mathrm{~cm} / \mathrm{s}\( over a \)5.0\(-m-long and \)1.0$-m-wide flat plate maintained at a constant temperature of \(20^{\circ} \mathrm{C}\). Determine the rate of heat transfer from the oil to the plate if the average oil properties are $\rho=880 \mathrm{~kg} / \mathrm{m}^{3}\(, \)\mu=0.005 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}, k=0.15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\(, and \)c_{p}=2.0 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$.
Water vapor at \(250^{\circ} \mathrm{C}\) is flowing with a velocity of $5 \mathrm{~m} / \mathrm{s}\( in parallel over a \)2-\mathrm{m}$-long flat plate where there is an unheated starting length of \(0.5 \mathrm{~m}\). The heated section of the flat plate is maintained at a constant temperature of \(50^{\circ} \mathrm{C}\). Determine \((a)\) the local convection heat transfer coefficient at the trailing edge, \((b)\) the average convection heat transfer coefficient for the heated section, and \((c)\) the rate of heat transfer per unit width for the heated section.
What do you think about this solution?
We value your feedback to improve our textbook solutions.