Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Ambient air at \(20^{\circ} \mathrm{C}\) flows over a 30 -cm-diameter hot spherical object with a velocity of \(4.2 \mathrm{~m} / \mathrm{s}\). If the average surface temperature of the object is \(200^{\circ} \mathrm{C}\), the average convection heat transfer coefficient during this process is (a) \(8.6 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) (b) \(15.7 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) (c) \(18.6 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) (d) \(21.0 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) (e) \(32.4 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) (For air, use $k=0.2514 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \operatorname{Pr}=0.7309, \nu=1.516 \times\( \)\left.10^{-5} \mathrm{~m}^{2} / \mathrm{s}, \mu_{\infty}=1.825 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}, \mu_{s}=2.577 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}\right)$

Short Answer

Expert verified
Based on the provided information and calculations, determine the closest option for the average convection heat transfer coefficient. Answer: (e) \(32.4 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\)

Step by step solution

01

Calculate Reynolds number

To calculate Reynolds number, we use the formula: \(Re = \frac{\rho Vd}{\mu}\) where \(Re\) is Reynolds number, \(V\) is the velocity of air (\(4.2 \mathrm{~m} / \mathrm{s}\)), \(d\) is the diameter of the spherical object (\(0.3 \mathrm{~m}\)), \(\rho\) is the air density (we can calculate it using \(\rho=\frac{\mu}{\nu}\)), and \(\mu\) is the dynamic viscosity of air (\(1.825 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}\)). First, we need to calculate the air density: Air Density (\(ρ\)) = \(\frac{\mu}{\nu} = \frac{1.825 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}}{1.516 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}} = 1.204~\mathrm{kg/m^3}\) Now, we can calculate Reynolds number: \(Re = \frac{(1.204~\mathrm{kg/m^3})(4.2~\mathrm{m/s})(0.3~\mathrm{m})}{1.825 \times 10^{-5}~\mathrm{kg/m\cdot s}} \approx 8381\)
02

Calculate Nusselt number

We use the following correlation for calculating Nusselt number for flow over a sphere: \(Nu = 2 + 0.43 Re^{1/2} Pr^{1/3}\) where \(Nu\) is the Nusselt number, \(Re\) is the Reynolds number (8381), and \(Pr\) is the Prandtl number (0.7309). Now, we can calculate Nusselt number: \(Nu = 2 + 0.43(8381)^{1/2}(0.7309)^{1/3} \approx 39.47\)
03

Calculate the average convection heat transfer coefficient

Now that we have the Nusselt number, we can find the average convection heat transfer coefficient using the formula: \(h = \frac{Nu \cdot k}{d}\) where \(h\) is the average convection heat transfer coefficient, \(Nu\) is the Nusselt number (39.47), \(k\) is the thermal conductivity of air (0.2514 \(\mathrm{W} / \mathrm{m} \cdot \mathrm{K}\)), and \(d\) is the diameter of the spherical object (0.3 \(\mathrm{~m}\)). Calculating the average convection heat transfer coefficient: \(h = \frac{(39.47)(0.2514 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})}{0.3 \mathrm{~m}} \approx 32.9~\mathrm{W/m\cdot K}\) Comparing the calculated value with the given options, the closest option is: (e) \(32.4 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free