Chapter 7: Problem 151
Wind at \(30^{\circ} \mathrm{C}\) flows over a \(0.5\)-m-diameter spherical tank containing iced water at \(0^{\circ} \mathrm{C}\) with a velocity of $25 \mathrm{~km} / \mathrm{h}$. If the tank is thin-shelled with a high thermal conductivity material, the rate at which ice melts is (a) \(4.78 \mathrm{~kg} / \mathrm{h}\) (b) \(6.15 \mathrm{~kg} / \mathrm{h}\) (c) \(7.45 \mathrm{~kg} / \mathrm{h}\) (d) \(11.8 \mathrm{~kg} / \mathrm{h}\) (e) \(16.0 \mathrm{~kg} / \mathrm{h}\) (Take \(h_{i f}=333.7 \mathrm{~kJ} / \mathrm{kg}\), and use the following for air: $k=0.02588 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \quad \operatorname{Pr}=0.7282, \quad \nu=1.608 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\(, \)\left.\mu_{\infty}=1.872 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}, \mu_{s}=1.729 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}\right)$