Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Air at \(20^{\circ} \mathrm{C}\) flows over a 4-m-long and 3 -m-wide surface of a plate whose temperature is \(80^{\circ} \mathrm{C}\) with a velocity of $7 \mathrm{~m} / \mathrm{s}$. The length of the surface for which the flow remains laminar is (a) \(0.9 \mathrm{~m}\) (b) \(1.3 \mathrm{~m}\) (c) \(1.8 \mathrm{~m}\) (d) \(2.2 \mathrm{~m}\) (e) \(3.7 \mathrm{~m}\) (For air, use $k=0.02735 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \operatorname{Pr}=0.7228, \nu=1.798 \times\( \)10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ )

Short Answer

Expert verified
(a) 1.0 m (b) 1.3 m (c) 1.5 m (d) 1.7 m #Answer# (b) 1.3 m

Step by step solution

01

Determine the Reynolds number for the transition

The critical Reynolds number for transition from laminar to turbulent boundary layer flow is approximately 5 x 10^5. So, we have: \(Re_{crit} = 5 \times 10^5\)
02

Use the Reynolds number to find the length for the transition

For the boundary layer flow, Reynolds number can be given by the equation: \(Re_x = \frac{\rho U_inf x}{\mu} = \frac{U_inf x}{\nu}\) Where \(Re_x\) is the Reynolds number, \(\rho\) is the density of the air, \(U_inf\) is the freestream velocity, \(x\) is the length for the transition point, \(\mu\) is the dynamic viscosity, and \(\nu\) is the kinematic viscosity. Use the given values for the freestream velocity and kinematic viscosity along with the critical Reynolds number to solve for 'x': \(5 \times 10^5 = \frac{7 x}{1.798 \times 10^{-5}}\)
03

Solve for the transition length 'x'

Re-arrange the equation from the previous step to solve for 'x' and plug in the given values to calculate the transition length: \(x = \frac{5 \times 10^5 \times 1.798 \times 10^{-5}}{7}\) \(x = 1.284 \mathrm{~m} \approx 1.3 \mathrm{~m}\) Therefore, the length of the surface for which the flow remains laminar is: Answer: (b) \(1.3 \mathrm{~m}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 12 -ft-long, \(1.5-\mathrm{kW}\) electrical resistance wire is made of \(0.1\)-in-diameter stainless steel $\left(k=8.7 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}-^{\circ} \mathrm{F}\right)$. The resistance wire operates in an environment at \(85^{\circ} \mathrm{F}\). Determine the surface temperature of the wire if it is cooled by a fan blowing air at a velocity of $20 \mathrm{ft} / \mathrm{s}$. For evaluations of the air properties, the film temperature has to be found iteratively. As an initial guess, assume the film temperature to be \(200^{\circ} \mathrm{F}\).

Consider laminar flow of air across a hot circular cylinder. At what point on the cylinder will the heat transfer be highest? What would your answer be if the flow were turbulent?

The local atmospheric pressure in Denver, Colorado (elevation $1610 \mathrm{~m}\( ), is \)83.4 \mathrm{kPa}$. Air at this pressure and at \(30^{\circ} \mathrm{C}\) flows with a velocity of \(6 \mathrm{~m} / \mathrm{s}\) over a \(2.5-\mathrm{m} \times 8-\mathrm{m}\) flat plate whose temperature is \(120^{\circ} \mathrm{C}\). Determine the rate of heat transfer from the plate if the air flows parallel to the \((a) 8-\mathrm{m}-\) long side and \((b)\) the \(2.5\)-m side.

Mercury at \(25^{\circ} \mathrm{C}\) flows over a 3 -m-long and 2 -m-wide flat plate maintained at \(75^{\circ} \mathrm{C}\) with a velocity of $0.01 \mathrm{~m} / \mathrm{s}$. Determine the rate of heat transfer from the entire plate.

A cylindrical rod is placed in a crossflow of air at $20^{\circ} \mathrm{C}(1 \mathrm{~atm})\( with velocity of \)10 \mathrm{~m} / \mathrm{s}$. The rod has a diameter of \(5 \mathrm{~mm}\) and a constant surface temperature of \(120^{\circ} \mathrm{C}\). Determine \((a)\) the average drag coefficient, \((b)\) the convection heat transfer coefficient using the Churchill and Bernstein relation, and (c) the convection heat transfer coefficient using Table 7-1.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free