Chapter 7: Problem 1
What is the difference between the upstream velocity and the free-stream velocity? For what types of flow are these two velocities equal to each other?
Chapter 7: Problem 1
What is the difference between the upstream velocity and the free-stream velocity? For what types of flow are these two velocities equal to each other?
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat does the friction coefficient represent in flow over a flat plate? How is it related to the drag force acting on the plate?
What is drag? What causes it? Why do we usually try to minimize it?
Air at \(20^{\circ} \mathrm{C}\) flows over a 4-m-long and 3 -m-wide surface of a plate whose temperature is \(80^{\circ} \mathrm{C}\) with a velocity of $5 \mathrm{~m} / \mathrm{s}$. The rate of heat transfer from the surface is (a) \(7383 \mathrm{~W}\) (b) \(8985 \mathrm{~W}\) (c) \(11,231 \mathrm{~W}\) (d) 14,672 W (e) 20,402 W (For air, use $k=0.02735 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \operatorname{Pr}=0.7228, \nu=1.798 \times\( \)\left.10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)$
In the effort to increase the removal of heat from a hot surface at \(120^{\circ} \mathrm{C}\), a cylindrical pin fin $\left(k_{f}=237 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\right)\( with a diameter of \)5 \mathrm{~mm}$ is attached to the hot surface. Air at \(20^{\circ} \mathrm{C}\) (1 atm) is flowing across the pin fin with a velocity of \(10 \mathrm{~m} / \mathrm{s}\).
Four power transistors, each dissipating \(10 \mathrm{~W}\), are mounted on a thin vertical aluminum plate $(k=237 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\( \)22 \mathrm{~cm} \times 22 \mathrm{~cm}$ in size. The heat generated by the transistors is to be dissipated by both surfaces of the plate to the surrounding air at \(20^{\circ} \mathrm{C}\), which is blown over the plate by a fan at a velocity of \(5 \mathrm{~m} / \mathrm{s}\). The entire plate can be assumed to be nearly isothermal, and the exposed surface area of the transistor can be taken to be equal to its base area. Determine the temperature of the aluminum plate. Evaluate the air properties at a film temperature of \(40^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.