Chapter 6: Problem 92
Consider an airplane cruising at an altitude of \(10 \mathrm{~km}\) where standard atmospheric conditions are \(-50^{\circ} \mathrm{C}\) and $26.5 \mathrm{kPa}\( at a speed of \)800 \mathrm{~km} / \mathrm{h}$. Each wing of the airplane can be modeled as a \(25-\mathrm{m} \times 3-\mathrm{m}\) flat plate, and the friction coefficient of the wings is \(0.0016\). Using the momentum-heat transfer analogy, determine the heat transfer coefficient for the wings at cruising conditions. Answer: $89.6 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$