Chapter 6: Problem 57
What is a similarity variable, and what is it used for? For what kinds of functions can we expect a similarity solution for a set of partial differential equations to exist?
Chapter 6: Problem 57
What is a similarity variable, and what is it used for? For what kinds of functions can we expect a similarity solution for a set of partial differential equations to exist?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider fluid flow over a surface with a velocity profile given as $$ u(y)=100\left(y+2 y^{2}-0.5 y^{3}\right) \mathrm{m} / \mathrm{s} $$ Determine the shear stress at the wall surface, if the fluid is (a) air at $1 \mathrm{~atm}\( and (b) liquid water, both at \)20^{\circ} \mathrm{C}$. Also calculate the wall shear stress ratio for the two fluids, and interpret the result.
A \(5-\mathrm{m} \times 5-\mathrm{m}\) flat plate maintained at a constant temperature of \(80^{\circ} \mathrm{C}\) is subjected to parallel flow of air at \(1 \mathrm{~atm}, 20^{\circ} \mathrm{C}\), and \(10 \mathrm{~m} / \mathrm{s}\). The total drag force acting on the upper surface of the plate is measured to be \(2.4 \mathrm{~N}\). Using the momentum-heat transfer analogy, determine the average convection heat transfer coefficient and the rate of heat transfer between the upper surface of the plate and the air. Evaluate the air properties at \(50^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\).
A metal plate $\left(k=180 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \rho=2800 \mathrm{~kg} / \mathrm{m}^{3}\right.\(, and \)c_{p}=880 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\( ) with a thickness of \)1 \mathrm{~cm}$ is being cooled by air at \(5^{\circ} \mathrm{C}\) with a convection heat transfer coefficient of \(30 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). If the initial temperature of the plate is \(300^{\circ} \mathrm{C}\), determine the plate temperature gradient at the surface after 2 minutes of cooling. Hint: Use the lumped system analysis to calculate the plate surface temperature. Make sure to verify the application of this method to this problem.
What is the no-slip condition? What causes it?
Air at \(1 \mathrm{~atm}\) is flowing over a flat plate with a free stream velocity of \(70 \mathrm{~m} / \mathrm{s}\). If the convection heat transfer coefficient can be correlated by $\mathrm{Nu}_{x}=0.03 \operatorname{Re}_{x}^{08} \operatorname{Pr}^{1 / 3}$, determine the friction coefficient and wall shear stress at a location \(2 \mathrm{~m}\) from the leading edge. Evaluate air properties at \(20^{\circ} \mathrm{C}\) and $1 \mathrm{~atm}$.
What do you think about this solution?
We value your feedback to improve our textbook solutions.