Chapter 6: Problem 40
What is turbulent viscosity? What is it caused by?
Chapter 6: Problem 40
What is turbulent viscosity? What is it caused by?
All the tools & learning materials you need for study success - in one app.
Get started for freeA long steel strip is being conveyed through a 3 -m-long furnace to be heat treated at a speed of \(0.01 \mathrm{~m} / \mathrm{s}\). The steel strip $\left(k=21 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \rho=8000 \mathrm{~kg} / \mathrm{m}^{3}\right.\(, and \)\left.c_{p}=570 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( has a thickness of \)5 \mathrm{~mm}$, and it enters the furnace at an initial temperature of \(20^{\circ} \mathrm{C}\). Inside the furnace, the air temperature is maintained at \(900^{\circ} \mathrm{C}\) with a convection heat transfer coefficient of $80 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Using appropriate software, determine the surface temperature gradient of the steel strip as a function of location inside the furnace. By varying the location in the furnace for \(0 \leq x \leq 3 \mathrm{~m}\) with increments of \(0.2 \mathrm{~m}\), plot the surface temperature gradient of the strip as a function of furnace location. Hint: Use the lumped system analysis to calculate the plate surface temperature. Make sure to verify the application of this method to this problem.
What is the physical significance of the Reynolds number? How is it defined for external flow over a plate of length \(L\) ?
Consider fluid flowing with a free stream velocity of $1 \mathrm{ft} / \mathrm{s}\( over a flat plate, where the critical Reynolds number is \)5 \times 10^{5}$. Determine the distance from the leading edge at which the transition from laminar to turbulent flow occurs for air (at 1 atm), liquid water, isobutane, and engine oil, and mercury. Evaluate all properties at $50^{\circ} \mathrm{F}$.
Atmospheric air with a velocity of \(10 \mathrm{~m} / \mathrm{s}\) and a temperature of \(20^{\circ} \mathrm{C}\) is in parallel flow over a flat heater surface which is maintained at \(80^{\circ} \mathrm{C}\). The surface area of the heater is \(0.30 \mathrm{~m}^{2}\). The drag force induced by the airflow on the heater is measured to be \(0.2 \mathrm{~N}\). Using the momentum-heat transfer analogy, determine the electrical power needed to maintain the prescribed heater surface temperature of \(80^{\circ} \mathrm{C}\). Evaluate the air properties at \(50^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\).
Consider a flat plate positioned inside a wind tunnel, and air at 1 atm and \(20^{\circ} \mathrm{C}\) is flowing with a free stream velocity of $60 \mathrm{~m} / \mathrm{s}$. What is the minimum length of the plate necessary for the Reynolds number to reach \(2 \times 10^{7}\) ? If the critical Reynolds number is \(5 \times 10^{5}\), what type of flow regime would the airflow experience at \(0.2 \mathrm{~m}\) from the leading edge?
What do you think about this solution?
We value your feedback to improve our textbook solutions.