Chapter 6: Problem 4
In which mode of heat transfer is the convection heat transfer coefficient usually higher, natural convection or forced convection? Why?
Chapter 6: Problem 4
In which mode of heat transfer is the convection heat transfer coefficient usually higher, natural convection or forced convection? Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeTwo metal plates are connected by a long ASTM A479 904L stainless steel bar. A hot gas, at \(400^{\circ} \mathrm{C}\), flows between the plates and across the bar. The bar has a square cross section with a width of \(2 \mathrm{~cm}\), and the length of the bar exposed to the hot gas is \(10 \mathrm{~cm}\). The average convection heat transfer coefficient for the bar in crossflow is correlated with the gas velocity as \(h=13.6 V^{0.675}\), where \(h\) and \(V\) have the units \(\mathrm{W} / \mathrm{m}^{2}, \mathrm{~K}\) and \(\mathrm{m} / \mathrm{s}\), respectively. The maximum use temperature for the ASTM A479 904L is \(260^{\circ} \mathrm{C}\) (ASME Code for Process Piping, ASME B31.3-2014, Table A-1M). The temperature of the bar is maintained by a cooling mechanism with the capability of removing heat at a rate of 100 W. Determine the maximum velocity that the gas can achieve without heating the stainless steel bar above the maximum use temperature set by the ASME Code for Process Piping.
What fluid property is responsible for the development of the velocity boundary layer? For what kinds of fluids will there be no velocity boundary layer on a flat plate?
The convection heat transfer coefficient for a clothed person standing in
moving air is expressed as \(h=14.8 \mathrm{~V}^{0.69}\) for $0.15
An airfoil with a characteristic length of \(0.2 \mathrm{ft}\) is placed in airflow at 1 atm and \(60^{\circ} \mathrm{F}\) with free stream velocity of $150 \mathrm{ft} / \mathrm{s}\( and convection heat transfer coefficient of \)21 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}$. If a second airfoil with a characteristic length of \(0.4 \mathrm{ft}\) is placed in the airflow at \(1 \mathrm{~atm}\) and \(60^{\circ} \mathrm{F}\) with free stream velocity of \(75 \mathrm{ft} / \mathrm{s}\), determine the heat flux from the second airfoil. Both airfoils are maintained at a constant surface temperature of \(180^{\circ} \mathrm{F}\).
In cryogenic equipment, cold gas flows in parallel \(410 \mathrm{~S}\) stainless steel plate. The average eonvection heat transfer \(410 S\) stainless steel plate. The average convection heat transfer velocity as $h=6.5 \mathrm{~V}^{0.8}\(, where \)h\( and \)V\( have the units \)\mathrm{W} / \mathrm{m}^{2}, \mathrm{~K}\( and \)\mathrm{m} / \mathrm{s}$, respectively. The temperature of the cold gas is \(-50^{\circ} \mathrm{C}\). The minimum temperature suitable for the ASTM \(-50^{\circ} \mathrm{C}\). The minimum temperature suitable for the ASTM A240 410 S plate is \(-30^{\circ} \mathrm{C}\) (ASME Code for Process Piping. ASME B31.3-2014, Table A-1M). To keep the plate's temperature from going below \(-30^{\circ} \mathrm{C}\), the plate is heated at a rate of 840 W. Determine the maximum velocity that the gas can achieve without cooling the plate below the suitable temperature set by the ASME Code for Process Piping.
What do you think about this solution?
We value your feedback to improve our textbook solutions.