Chapter 6: Problem 16
In cryogenic equipment, cold gas flows in parallel \(410 \mathrm{~S}\) stainless steel plate. The average eonvection heat transfer \(410 S\) stainless steel plate. The average convection heat transfer velocity as $h=6.5 \mathrm{~V}^{0.8}\(, where \)h\( and \)V\( have the units \)\mathrm{W} / \mathrm{m}^{2}, \mathrm{~K}\( and \)\mathrm{m} / \mathrm{s}$, respectively. The temperature of the cold gas is \(-50^{\circ} \mathrm{C}\). The minimum temperature suitable for the ASTM \(-50^{\circ} \mathrm{C}\). The minimum temperature suitable for the ASTM A240 410 S plate is \(-30^{\circ} \mathrm{C}\) (ASME Code for Process Piping. ASME B31.3-2014, Table A-1M). To keep the plate's temperature from going below \(-30^{\circ} \mathrm{C}\), the plate is heated at a rate of 840 W. Determine the maximum velocity that the gas can achieve without cooling the plate below the suitable temperature set by the ASME Code for Process Piping.