Chapter 5: Problem 94
What are the two basic methods of solution of transient problems based on finite differencing? How do heat transfer terms in the energy balance formulation differ in the two methods?
Chapter 5: Problem 94
What are the two basic methods of solution of transient problems based on finite differencing? How do heat transfer terms in the energy balance formulation differ in the two methods?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a large uranium plate of thickness \(L=9 \mathrm{~cm}\), thermal conductivity \(k=28 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), and thermal diffusivity \(\alpha=12.5 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\) that is initially at a uniform temperature of \(100^{\circ} \mathrm{C}\). Heat is generated uniformly in the plate at a constant rate of $\dot{e}=10^{6} \mathrm{~W} / \mathrm{m}^{3}\(. At time \)t=0$, the left side of the plate is insulated while the other side is subjected to convection with an environment at \(T_{\infty}=20^{\circ} \mathrm{C}\) with a heat transfer coefficient of \(h=35 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Using the explicit finite difference approach with a uniform nodal spacing of $\Delta x=1.5 \mathrm{~cm}\(, determine \)(a)$ the temperature distribution in the plate after \(5 \mathrm{~min}\) and \((b)\) how long it will take for steady conditions to be reached in the plate.
A cylindrical aluminum fin with adiabatic tip is attached to a wall with surface temperature of \(300^{\circ} \mathrm{C}\), and it is exposed to an ambient air condition of \(15^{\circ} \mathrm{C}\) with convection heat transfer coefficient of \(150 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). The fin has a uniform cross section with diameter of \(1 \mathrm{~cm}\), length of $5 \mathrm{~cm}\(, and thermal conductivity of \)237 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. Assuming steady one-dimensional heat transfer along the fin and the nodal spacing to be uniformly \(10 \mathrm{~mm},(a)\) obtain the finite difference equations for use with the Gauss-Seidel iterative method, and \((b)\) determine the nodal temperatures using the Gauss-Seidel iterative method, and compare the results with the analytical solution.
What are the basic steps involved in solving a system of equations with the Gauss-Seidel method?
Why do the results obtained using a numerical method differ from the exact results obtained analytically? What are the causes of this difference?
In many engineering applications variation in thermal properties is significant, especially when there are large temperature gradients or the material is not homogeneous. To account for these variations in thermal properties, develop a finite difference formulation for an internal node in the case of a three-dimensional, steady-state heat conduction equation with variable thermal conductivity.
What do you think about this solution?
We value your feedback to improve our textbook solutions.