Chapter 5: Problem 52
A hot surface at \(100^{\circ} \mathrm{C}\) is to be cooled by attaching \(3-\mathrm{cm}-\) long, \(0.25-\mathrm{cm}\)-diameter aluminum pin fins $(k=237 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$ with a center-to-center distance of \(0.6 \mathrm{~cm}\). The temperature of the surrounding medium is \(30^{\circ} \mathrm{C}\), and the combined heat transfer coefficient on the surfaces is \(35 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Assuming steady one-dimensional heat transfer along the fin and taking the nodal spacing to be \(0.5 \mathrm{~cm}\), determine \((a)\) the finite difference formulation of this problem, \((b)\) the nodal temperatures along the fin by solving these equations, \((c)\) the rate of heat transfer from a single fin, and \((d)\) the rate of heat transfer from a \(1-\mathrm{m} \times 1-\mathrm{m}\) section of the plate.