Chapter 5: Problem 49
A nonmetal plate is connected to a stainless steel plate by long ASTM A437 B4B stainless steel bolts \(9.5 \mathrm{~mm}\) in diameter. The portion of the bolts exposed to convection heat transfer with a cryogenic fluid is \(5 \mathrm{~cm}\) long. The fluid temperature for convection is at \(-50^{\circ} \mathrm{C}\) with a convection heat transfer coefficient of $100 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\(. The thermal conductivity of the bolts is known to be \)23.9 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. Both the nonmetal and stainless steel plates maintain a uniform temperature of \(0^{\circ} \mathrm{C}\). According to the ASME Code for Process Piping (ASME B31.3-2014, Table A-2M), the minimum temperature suitable for ASTM A437 B4B stainless steel bolts is \(-30^{\circ} \mathrm{C}\). Using the finite difference method with a uniform nodal spacing of \(\Delta x=5 \mathrm{~mm}\) along the bolt, determine the temperature at each node. Compare the numerical results with the analytical solution. Plot the temperature distribution along the bolt. Would any part of the ASTM A437 B4B bolts be lower than the minimum suitable temperature of \(-30^{\circ} \mathrm{C}\) ?