Chapter 5: Problem 41
Consider a 2-m-long and \(0.7-\mathrm{m}\)-wide stainless steel plate whose thickness is \(0.1 \mathrm{~m}\). The left surface of the plate is exposed to a uniform heat flux of \(2000 \mathrm{~W} / \mathrm{m}^{2}\), while the right surface of the plate is exposed to a convective environment at $0^{\circ} \mathrm{C}\( with \)h=400 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. The thermal conductivity of the stainless steel plate can be assumed to vary linearly with temperature range as \(k(T)=k_{o}(1+\beta T)\) where $k_{o}=48 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\( and \)\beta=9.21 \times 10^{-4 \circ} \mathrm{C}^{-1}$. The stainless steel plate experiences a uniform volumetric heat generation at a rate of $8 \times 10^{5} \mathrm{~W} / \mathrm{m}^{3}$. Assuming steady-state one-dimensional heat transfer, determine the temperature distribution along the plate thickness.