Chapter 5: Problem 4
What is the basis of the energy balance method? How does it differ from the formal finite difference method? For a specified nodal network, will these two methods result in the same or a different set of equations?
Chapter 5: Problem 4
What is the basis of the energy balance method? How does it differ from the formal finite difference method? For a specified nodal network, will these two methods result in the same or a different set of equations?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider an aluminum alloy fin $(k=180 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\( of triangular cross section whose length is \)L=5 \mathrm{~cm}$, base thickness is \(b=1 \mathrm{~cm}\), and width \(w\) in the direction normal to the plane of paper is very large. The base of the fin is maintained at a temperature of \(T_{0}=180^{\circ} \mathrm{C}\). The fin is losing heat by convection to the ambient air at \(T_{\infty}=25^{\circ} \mathrm{C}\) with a heat transfer coefficient of $h=25 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$ and by radiation to the surrounding surfaces at an average temperature of \(T_{\text {sarr }}=290 \mathrm{~K}\). Using the finite difference method with six equally spaced nodes along the fin in the \(x\)-direction, determine \((a)\) the temperatures at the nodes and (b) the rate of heat transfer from the fin for \(w=1 \mathrm{~m}\). Take the emissivity of the fin surface to be \(0.9\) and assume steady onedimensional heat transfer in the fin. Answers: (a) \(177.0^{\circ} \mathrm{C}\), $174.1^{\circ} \mathrm{C}, 171.2^{\circ} \mathrm{C}, 168.4^{\circ} \mathrm{C}, 165.5^{\circ} \mathrm{C} ;\( (b) \)537 \mathrm{~W}$
How can a node on an insulated boundary be treated as an interior node in the finite difference formulation of a plane wall? Explain.
A hot brass plate is having its upper surface cooled by an impinging jet of air at a temperature of \(15^{\circ} \mathrm{C}\) and convection heat transfer coefficient of \(220 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). The 10 -cm-thick brass plate $\left(\rho=8530 \mathrm{~kg} / \mathrm{m}^{3}, c_{p}=380 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}, k=110 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\right.\(, and \)\alpha=33.9 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ ) had a uniform initial temperature of \(650^{\circ} \mathrm{C}\), and the lower surface of the plate is insulated. Using a uniform nodal spacing of \(\Delta x=2.5 \mathrm{~cm}\), determine \((a)\) the explicit finite difference equations, \((b)\) the maximum allowable value of the time step, and \((c)\) the temperature at the center plane of the brass plate after 1 min of cooling, and (d) compare the result in (c) with the approximate analytical solution from Chap. \(4 .\)
Consider steady two-dimensional heat transfer in a long solid bar of square cross section in which heat is generated uniformly at a rate of $\dot{e}=0.19 \times 10^{5} \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{3}$. The cross section of the bar is \(0.5 \mathrm{ft} \times 0.5 \mathrm{ft}\) in size, and its thermal conductivity is $k=16 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}$. All four sides of the bar are subjected to convection with the ambient air at \(T_{\infty}=70^{\circ} \mathrm{F}\) with a heat transfer coefficient of $h=7.9 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}$. Using the finite difference method with a mesh size of \(\Delta x=\Delta y=0.25 \mathrm{ft}\), determine \((a)\) the temperatures at the nine nodes and \((b)\) the rate of heat loss from the bar through a 1-ft-long section.
What are the two basic methods of solution of transient problems based on finite differencing? How do heat transfer terms in the energy balance formulation differ in the two methods?
What do you think about this solution?
We value your feedback to improve our textbook solutions.