Chapter 5: Problem 17
How can a node on an insulated boundary be treated as an interior node in the finite difference formulation of a plane wall? Explain.
Chapter 5: Problem 17
How can a node on an insulated boundary be treated as an interior node in the finite difference formulation of a plane wall? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a large uranium plate of thickness \(5 \mathrm{~cm}\) and thermal conductivity \(k=34 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) in which heat is generated uniformly at a constant rate of $\dot{e}=6 \times 10^{5} \mathrm{~W} / \mathrm{m}^{3}$. One side of the plate is insulated, while the other side is subjected to convection to an environment at \(30^{\circ} \mathrm{C}\) with a heat transfer coefficient of $h=60 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\(. Considering six equally spaced nodes with a nodal spacing of \)1 \mathrm{~cm},(a)$ obtain the finite difference formulation of this problem and (b) determine the nodal temperatures under steady conditions by solving those equations.
Consider steady one-dimensional heat conduction in a composite plane wall consisting of two layers \(A\) and \(B\) in perfect contact at the interface. The wall involves no heat generation. The nodal network of the medium consists of nodes 0,1 (at the interface), and 2 with a uniform nodal spacing of $\Delta x$. Using the energy balance approach, obtain the finite difference formulation of this problem for the case of insulation at the left boundary (node 0 ) and radiation at the right boundary (node 2 ) with an emissivity of \(\varepsilon\) and surrounding temperature of \(T_{\text {sarr }}\).
A plane wall with surface temperature of \(350^{\circ} \mathrm{C}\) is attached with straight rectangular fins $(k=235 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\(. The fins are exposed to an ambient air condition of \)25^{\circ} \mathrm{C}\(, and the convection heat transfer coefficient is \)154 \mathrm{~W} / \mathrm{m}^{2}, \mathrm{~K}\(. Each fin has a length of \)50 \mathrm{~mm}$, a base \(5 \mathrm{~mm}\) thick, and a width of \(100 \mathrm{~mm}\). For a single fin, using a uniform nodal spacing of \(10 \mathrm{~mm}\), determine \((a)\) the finite difference equations, (b) the nodal temperatures by solving the finite difference equations, and \((c)\) the heat transfer rate and compare the result with the analytical solution.
A nonmetal plate is connected to a stainless steel plate by long ASTM A437 B4B stainless steel bolts \(9.5 \mathrm{~mm}\) in diameter. The portion of the bolts exposed to convection heat transfer with a cryogenic fluid is \(5 \mathrm{~cm}\) long. The fluid temperature for convection is at \(-50^{\circ} \mathrm{C}\) with a convection heat transfer coefficient of $100 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\(. The thermal conductivity of the bolts is known to be \)23.9 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. Both the nonmetal and stainless steel plates maintain a uniform temperature of \(0^{\circ} \mathrm{C}\). According to the ASME Code for Process Piping (ASME B31.3-2014, Table A-2M), the minimum temperature suitable for ASTM A437 B4B stainless steel bolts is \(-30^{\circ} \mathrm{C}\). Using the finite difference method with a uniform nodal spacing of \(\Delta x=5 \mathrm{~mm}\) along the bolt, determine the temperature at each node. Compare the numerical results with the analytical solution. Plot the temperature distribution along the bolt. Would any part of the ASTM A437 B4B bolts be lower than the minimum suitable temperature of \(-30^{\circ} \mathrm{C}\) ?
Consider a medium in which the finite difference formulation of a general interior node is given in its simplest form as $$ T_{\text {left }}+T_{\text {top }}+T_{\text {right }}+T_{\text {boetom }}-4 T_{\text {node }}+\frac{\dot{e}_{\text {node }} P^{2}}{k}=0 $$ (a) Is heat transfer in this medium steady or transient? (b) Is heat transfer one-, two-, or three-dimensional? (c) Is there heat generation in the medium? (d) Is the nodal spacing constant or variable? (e) Is the thermal conductivity of the medium constant or variable?
What do you think about this solution?
We value your feedback to improve our textbook solutions.