Chapter 5: Problem 158
Consider a uranium nuclear fuel element $(k=35 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\(, \)\rho=19,070 \mathrm{~kg} / \mathrm{m}^{3}\(, and \)\left.c_{p}=116 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( of radius \)10 \mathrm{~cm}$ that experiences a volumetric heat generation at a rate of $4 \times 10^{5} \mathrm{~W} / \mathrm{m}^{3}$ because of the nuclear fission reaction. The nuclear fuel element initially at a temperature of \(500^{\circ} \mathrm{C}\) is enclosed inside a cladding made of stainless steel material $\left(k=15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \rho=8055 \mathrm{~kg} / \mathrm{m}^{3}\right.\(, and \)\left.c_{p}=480 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( of thickness \)4 \mathrm{~cm}$. The fuel element is cooled by passing pressurized heavy water over the cladding surface. The pressurized water has a bulk temperature of \(50^{\circ} \mathrm{C}\), and the convective heat transfer coefficient is $1000 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Assuming one-dimensional transient heat conduction in Cartesian coordinates, determine the temperature in the fuel rod and in the cladding after 10,20 , and \(30 \mathrm{~min}\). Use the implicit finite difference formulation with a uniform mesh size of \(2 \mathrm{~cm}\) and a time step of $1 \mathrm{~min}$.