Chapter 5: Problem 153
A hot surface at \(120^{\circ} \mathrm{C}\) is to be cooled by attaching 8-cm- long, \(0.8-\mathrm{cm}\) - diameter aluminum pin fins ( $k=237 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\( and \)\left.\alpha=97.1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)$ to it with a center-to-center distance of \(1.6 \mathrm{~cm}\). The temperature of the surrounding medium is $15^{\circ} \mathrm{C}\(, and the heat transfer coefficient on the surfaces is \)35 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Initially, the fins are at a uniform temperature of \(30^{\circ} \mathrm{C}\), and at time \(t=0\), the temperature of the hot surface is raised to \(120^{\circ} \mathrm{C}\). Assuming one-dimensional heat conduction along the fin and taking the nodal spacing to be \(\Delta x=2 \mathrm{~cm}\) and a time step to be \(\Delta t=0.5 \mathrm{~s}\), determine the nodal temperatures after \(10 \mathrm{~min}\) by using the explicit finite difference method. Also, determine how long it will take for steady conditions to be reached.