Chapter 5: Problem 139
Suggest some practical ways of reducing the roundoff error.
Chapter 5: Problem 139
Suggest some practical ways of reducing the roundoff error.
All the tools & learning materials you need for study success - in one app.
Get started for freeStarting with an energy balance on the volume element, obtain the steady three-dimensional finite difference equation for a general interior node in rectangular coordinates for \(T(x, y, z)\) for the case of constant thermal conductivity and uniform heat generation.
In many engineering applications variation in thermal properties is significant, especially when there are large temperature gradients or the material is not homogeneous. To account for these variations in thermal properties, develop a finite difference formulation for an internal node in the case of a three-dimensional, steady-state heat conduction equation with variable thermal conductivity.
Consider transient two-dimensional heat conduction in a rectangular region that is to be solved by the explicit method. If all boundaries of the region are either insulated or at specified temperatures, express the stability criterion for this problem in its simplest form.
Consider transient heat conduction in a plane wall with variable heat generation and constant thermal conductivity. The nodal network of the medium consists of nodes 0,1 , \(2,3,4\), and 5 with a uniform nodal spacing of $\Delta x$. The wall is initially at a specified temperature. Using the energy balance approach, obtain the explicit finite difference formulation of the boundary nodes for the case of insulation at the left boundary (node 0 ) and radiation at the right boundary (node 5) with an emissivity of \(\varepsilon\) and surrounding temperature of \(T_{\text {surr }}\)
How is the finite difference formulation for the first derivative related to the Taylor series expansion of the solution function?
What do you think about this solution?
We value your feedback to improve our textbook solutions.