Chapter 5: Problem 133
What is the cause of the discretization error? How does the global discretization error differ from the local discretization error?
Chapter 5: Problem 133
What is the cause of the discretization error? How does the global discretization error differ from the local discretization error?
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat is a practical way of checking if the round-off error has been significant in calculations?
A hot surface at \(100^{\circ} \mathrm{C}\) is to be cooled by attaching \(3-\mathrm{cm}-\) long, \(0.25-\mathrm{cm}\)-diameter aluminum pin fins $(k=237 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$ with a center-to-center distance of \(0.6 \mathrm{~cm}\). The temperature of the surrounding medium is \(30^{\circ} \mathrm{C}\), and the combined heat transfer coefficient on the surfaces is \(35 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Assuming steady one-dimensional heat transfer along the fin and taking the nodal spacing to be \(0.5 \mathrm{~cm}\), determine \((a)\) the finite difference formulation of this problem, \((b)\) the nodal temperatures along the fin by solving these equations, \((c)\) the rate of heat transfer from a single fin, and \((d)\) the rate of heat transfer from a \(1-\mathrm{m} \times 1-\mathrm{m}\) section of the plate.
Consider steady one-dimensional heat conduction in a pin fin of constant diameter \(D\) with constant thermal conductivity. The fin is losing heat by convection to the ambient air at \(T_{\infty}\) with a convection coefficient of \(h\), and by radiation to the surrounding surfaces at an average temperature of \(T_{\text {surr- }}\). The nodal network of the fin consists of nodes 0 (at the base), 1 (in the middle), and 2 (at the fin tip) with a uniform nodal spacing of \(\Delta x\). Using the energy balance approach, obtain the finite difference formulation of this problem to determine \(T_{1}\) and \(T_{2}\) for the case of specified temperature at the fin base and negligible heat transfer at the fin tip. All temperatures are in \({ }^{\circ} \mathrm{C}\).
Consider transient heat conduction in a plane wall whose left surface (node 0 ) is maintained at \(80^{\circ} \mathrm{C}\) while the right surface (node 6) is subjected to a solar heat flux of \(600 \mathrm{~W} / \mathrm{m}^{2}\). The wall is initially at a uniform temperature of \(50^{\circ} \mathrm{C}\). Express the explicit finite difference formulation of the boundary nodes 0 and 6 for the case of no heat generation. Also, obtain the finite difference formulation for the total amount of heat transfer at the left boundary during the first three time steps.
How does the finite difference formulation of a transient heat conduction problem differ from that of a steady heat conduction problem? What does the term \(\rho A \Delta x c_{p}\left(T_{m}^{i+1}-T_{m}^{i}\right) / \Delta t\) represent in the transient finite difference formulation?
What do you think about this solution?
We value your feedback to improve our textbook solutions.