Chapter 5: Problem 120
The roof of a house consists of a \(15-\mathrm{cm}\)-thick concrete slab \(\left(k=1.4 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\right.\) and \(\left.\alpha=0.69 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)\) that is \(18 \mathrm{~m}\) wide and \(32 \mathrm{~m}\) long. One evening at $6 \mathrm{p} . \mathrm{m}$., the slab is observed to be at a uniform temperature of \(18^{\circ} \mathrm{C}\). The average ambient air and the night sky temperatures for the entire night are predicted to be \(6^{\circ} \mathrm{C}\) and \(260 \mathrm{~K}\), respectively. The convection heat transfer coefficients at the inner and outer surfaces of the roof can be taken to be $h_{i}=5 \mathrm{~W} / \mathrm{m}^{2}, \mathrm{~K}\( and \)h_{o}=12 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, respectively. The house and the interior surfaces of the walls and the floor are maintained at a constant temperature of \(20^{\circ} \mathrm{C}\) during the night, and the emissivity of both surfaces of the concrete roof is \(0.9\). Considering both radiation and convection heat transfers and using the explicit finite difference method with a time step of \(\Delta t=5 \mathrm{~min}\) and a mesh size of $\Delta x=3 \mathrm{~cm}$, determine the temperatures of the inner and outer surfaces of the roof at 6 a.m. Also, determine the average rate of heat transfer through the roof during that night.