Chapter 5: Problem 115
Consider a large uranium plate of thickness \(L=9 \mathrm{~cm}\), thermal conductivity \(k=28 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), and thermal diffusivity \(\alpha=12.5 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\) that is initially at a uniform temperature of \(100^{\circ} \mathrm{C}\). Heat is generated uniformly in the plate at a constant rate of $\dot{e}=10^{6} \mathrm{~W} / \mathrm{m}^{3}\(. At time \)t=0$, the left side of the plate is insulated while the other side is subjected to convection with an environment at \(T_{\infty}=20^{\circ} \mathrm{C}\) with a heat transfer coefficient of \(h=35 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Using the explicit finite difference approach with a uniform nodal spacing of $\Delta x=1.5 \mathrm{~cm}\(, determine \)(a)$ the temperature distribution in the plate after \(5 \mathrm{~min}\) and \((b)\) how long it will take for steady conditions to be reached in the plate.