Chapter 5: Problem 100
Express the general stability criterion for the explicit method of solution of transient heat conduction problems.
Chapter 5: Problem 100
Express the general stability criterion for the explicit method of solution of transient heat conduction problems.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat are the basic steps involved in solving a system of equations with the Gauss-Seidel method?
Starting with an energy balance on the volume element, obtain the two- dimensional transient explicit finite difference equation for a general interior node in rectangular coordinates for \(T(x, y, t)\) for the case of constant thermal conductivity and uniform heat generation.
How is the finite difference formulation for the first derivative related to the Taylor series expansion of the solution function?
A hot surface at \(100^{\circ} \mathrm{C}\) is to be cooled by attaching \(3-\mathrm{cm}-\) long, \(0.25-\mathrm{cm}\)-diameter aluminum pin fins $(k=237 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$ with a center-to-center distance of \(0.6 \mathrm{~cm}\). The temperature of the surrounding medium is \(30^{\circ} \mathrm{C}\), and the combined heat transfer coefficient on the surfaces is \(35 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Assuming steady one-dimensional heat transfer along the fin and taking the nodal spacing to be \(0.5 \mathrm{~cm}\), determine \((a)\) the finite difference formulation of this problem, \((b)\) the nodal temperatures along the fin by solving these equations, \((c)\) the rate of heat transfer from a single fin, and \((d)\) the rate of heat transfer from a \(1-\mathrm{m} \times 1-\mathrm{m}\) section of the plate.
Consider steady two-dimensional heat transfer in a long solid bar of square cross section in which heat is generated uniformly at a rate of $\dot{e}=0.19 \times 10^{5} \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{3}$. The cross section of the bar is \(0.5 \mathrm{ft} \times 0.5 \mathrm{ft}\) in size, and its thermal conductivity is $k=16 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}$. All four sides of the bar are subjected to convection with the ambient air at \(T_{\infty}=70^{\circ} \mathrm{F}\) with a heat transfer coefficient of $h=7.9 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$. Using the finite difference method with a mesh size of \(\Delta x=\Delta y=0.25 \mathrm{ft}\), determine \((a)\) the temperatures at the nine nodes and \((b)\) the rate of heat loss from the bar through a 1-ft-long section.
What do you think about this solution?
We value your feedback to improve our textbook solutions.