Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider heat transfer between two identical hot solid bodies and the air surrounding them. The first solid is being cooled by a fan while the second one is allowed to cool naturally. For which solid is the lumped system analysis more likely to be applicable? Why?

Short Answer

Expert verified
Answer: The lumped system analysis is more likely to be applicable to the solid cooled by the fan. This is because the increased convective heat transfer coefficient provided by the fan results in a smaller Biot number, indicating that the internal temperature gradients within the solid are negligible compared to the cooling effect provided by the surrounding air.

Step by step solution

01

Identify the assumptions of the lumped system analysis

The lumped system analysis assumes that the temperature within the solid is uniform and that any temperature gradients within the body are negligible. This assumption is valid when the solid has much smaller thermal resistance than the fluid surrounding it. The lumped system analysis relies on the Biot number (Bi), which is the ratio of the internal thermal resistance to the convective resistance. If the Biot number is much smaller than one (Bi << 1), the lumped system analysis is applicable.
02

Determine the effect of the cooling methods on the Biot number

In this exercise, one solid is being cooled by a fan, while the other cools naturally. The fan increases the convective heat transfer coefficient, which reduces the convective resistance surrounding the solid. This results in a lower Biot number for the solid cooled by the fan. In contrast, the solid that cools naturally has a higher convective resistance due to the natural convection, resulting in a higher Biot number.
03

Compare the Biot numbers and lumped system applicability

Since both solids are identical, they have the same material properties and geometries, meaning their internal thermal resistances are the same. The difference in the cooling methods results in different Biot numbers. As mentioned earlier, the Biot number is smaller for the solid cooled by the fan due to the increased convective heat transfer coefficient. A smaller Biot number means that the lumped system analysis is more applicable to the solid cooled by the fan.
04

Explain the reasoning

The lumped system analysis is more applicable to the solid cooled by the fan because the internal temperature gradients in the solid are negligible compared to the cooling effect provided by the surrounding air. The increased convective heat transfer coefficient from the fan ensures that the thermal resistance of the solid is much smaller than the thermal resistance of the fluid surrounding the solid, making the lumped system analysis more suitable for this condition.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

How does refrigeration prevent or delay the spoilage of foods? Why does freezing extend the storage life of foods for months?

Stainless steel ball bearings $\left(\rho=8085 \mathrm{~kg} / \mathrm{m}^{3}\right.\(, \)k=15.1 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}, \quad c_{p}=0.480 \mathrm{KJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}, \quad\( and \)\quad \alpha=3.91 \times\( \)10^{-6} \mathrm{~m}^{2} / \mathrm{s}\( ) having a diameter of \)1.2 \mathrm{~cm}$ are to be quenched in water. The balls leave the oven at a uniform temperature of $900^{\circ} \mathrm{C}\( and are exposed to air at \)30^{\circ} \mathrm{C}$ for a while before they are dropped into the water. If the temperature of the balls is not to fall below \(850^{\circ} \mathrm{C}\) prior to quenching and the heat transfer coefficient in the air is $125 \mathrm{~W} / \mathrm{m}^{2},{ }^{\circ} \mathrm{C}$, determine how long they can stand in the air before being dropped into the water.

A large iron slab $\left(\rho=7870 \mathrm{~kg} / \mathrm{m}^{3}, c_{p}=447 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right.\(, and \)k=80.2 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$ was initially heated to a uniform temperature of \(150^{\circ} \mathrm{C}\) and then placed on a concrete floor $\left(\rho=1600 \mathrm{~kg} / \mathrm{m}^{3}, c_{p}=840 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right.\(, and \)\left.k=0.79 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\right)$. The concrete floor was initially at a uniform temperature of \(30^{\circ} \mathrm{C}\). Determine \((a)\) the surface temperature between the iron slab and concrete floor and \((b)\) the temperature of the concrete floor at the depth of \(25 \mathrm{~mm}\), if the surface temperature remains constant after \(15 \mathrm{~min}\).

A long nickel alloy (ASTM B335) cylindrical rod is used as a component in high-temperature process equipment. The rod has a diameter of $5 \mathrm{~cm}\(; its thermal conductivity, specific heat, and density are \)11 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, 380 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\(, and \)9.3 \mathrm{~g} / \mathrm{cm}^{3}$, respectively. Occasionally, the rod is submerged in hot fluid for several minutes, where the fluid temperature is \(500^{\circ} \mathrm{C}\) with a convection heat transfer coefficient of \(440 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). The ASME Code for Process Piping limits the maximum use temperature for ASTM B335 rod to \(427^{\circ} \mathrm{C}\) (ASME B31.32014 , Table A-1M). If the initial temperature of the rod is \(20^{\circ} \mathrm{C}\), how long can the rod be submerged in the hot fluid before reaching its maximum use temperature?

What is an infinitely long cylinder? When is it proper to treat an actual cylinder as being infinitely long, and when is it not? For example, is it proper to use this model when finding the temperatures near the bottom or top surfaces of a cylinder? Explain.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free