Chapter 4: Problem 4
For which solid is the lumped system analysis more likely to be applicable: an actual apple or a golden apple of the same size? Why?
Chapter 4: Problem 4
For which solid is the lumped system analysis more likely to be applicable: an actual apple or a golden apple of the same size? Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeA heated 6-mm-thick Pyroceram plate $\left(\rho=2600 \mathrm{~kg} / \mathrm{m}^{3}\right.\(, \)c_{p}=808 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}, k=3.98 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\(, and \)\left.\alpha=1.89 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)$ is being cooled in a room with air temperature of \(25^{\circ} \mathrm{C}\) and convection heat transfer coefficient of \(13.3 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). The heated Pyroceram plate had an initial temperature of \(500^{\circ} \mathrm{C}\), and it is allowed to cool for \(286 \mathrm{~s}\). If the mass of the Pyroceram plate is \(10 \mathrm{~kg}\), determine the heat transfer from the Pyroceram plate during the cooling process using the analytical one-term approximation method.
In a manufacturing facility, 2-in-diameter brass balls $\left(k=64.1 \mathrm{Btw} / \mathrm{h} \cdot \mathrm{ft}{ }^{\circ} \mathrm{F}, \rho=532 \mathrm{lbm} / \mathrm{ft}^{3}\right.\(, and \)\left.c_{p}=0.092 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}\right)\( initially at \)250^{\circ} \mathrm{F}\( are quenched in a water bath at \)120^{\circ} \mathrm{F}$ for a period of \(2 \mathrm{~min}\) at a rate of \(120 \mathrm{balls}\) per minute. If the convection heat transfer coefficient is $42 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2},{ }^{\circ} \mathrm{F}\(, determine \)(a)$ the temperature of the balls after quenching and \((b)\) the rate at which heat needs to be removed from the water in order to keep its temperature constant at $120^{\circ} \mathrm{F}
Water mains must be placed at sufficient depth below the earth's surface to avoid freezing during extended periods of subfreezing temperatures. Determine the minimum depth at which the water main must be placed at a location where the soil is initially at \(15^{\circ} \mathrm{C}\) and the earth's surface temperature under the worst conditions is expected to remain at $-10^{\circ} \mathrm{C}$ for 75 days. Take the properties of soil at that location to be \(k=0.7 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) and $\alpha=1.4 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\(. Answer: \)7.05 \mathrm{~m}$
A \(10-\mathrm{cm}\)-inner-diameter, 30-cm-long can filled with water initially at \(25^{\circ} \mathrm{C}\) is put into a household refrigerator at $3^{\circ} \mathrm{C}\(. The heat transfer coefficient on the surface of the can is \)14 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Assuming that the temperature of the water remains uniform during the cooling process, the time it takes for the water temperature to drop to \(5^{\circ} \mathrm{C}\) is (a) \(0.55 \mathrm{~h}\) (b) \(1.17 \mathrm{~h}\) (c) \(2.09 \mathrm{~h}\) (d) \(3.60 \mathrm{~h}\) (e) \(4.97 \mathrm{~h}\)
A man is found dead in a room at \(12^{\circ} \mathrm{C}\). The surface temperature on his waist is measured to be \(23^{\circ} \mathrm{C}\), and the heat transfer coefficient is estimated to be $9 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\(. Modeling the body as a \)28-\mathrm{cm}$ diameter, \(1.80\)-m-long cylinder, estimate how long it has been since he died. Take the properties of the body to be $k=0.62 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\( and \)\alpha=0.15 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, and assume the initial temperature of the body to be \(36^{\circ} \mathrm{C}\). Solve this problem using the analytical one-term approximation method.
What do you think about this solution?
We value your feedback to improve our textbook solutions.