Chapter 4: Problem 137
What are the factors that affect the quality of frozen fish?
Chapter 4: Problem 137
What are the factors that affect the quality of frozen fish?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn a production facility, 3-cm-thick large brass plates $\left(k=110 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \rho=8530 \mathrm{~kg} / \mathrm{m}^{3}, c_{p}=380 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right.$, and \(\alpha=33.9 \times\) \(10^{-6} \mathrm{~m}^{2} / \mathrm{s}\) ) that are initially at a uniform temperature of \(25^{\circ} \mathrm{C}\) are heated by passing them through an oven maintained at \(700^{\circ} \mathrm{C}\). The plates remain in the oven for a period of \(10 \mathrm{~min}\). Taking the convection heat transfer coefficient to be $h=80 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, determine the surface temperature of the plates when they come out of the oven. Solve this problem using the analytical one-term approximation method. Can this problem be solved using lumped system analysis? Justify your answer.
During a fire, the trunks of some dry oak trees $\left(k=0.17 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\right.\( and \)\left.\alpha=1.28 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}\right)$ that are initially at a uniform temperature of \(30^{\circ} \mathrm{C}\) are exposed to hot gases at \(600^{\circ} \mathrm{C}\) for a period of \(4 \mathrm{~h}\), with a heat transfer coefficient of \(65 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) on the surface. The ignition temperature of the trees is \(410^{\circ} \mathrm{C}\). Treating the trunks of the trees as long cylindrical rods of diameter $20 \mathrm{~cm}$, determine if these dry trees will ignite as the fire sweeps through them. Solve this problem using the analytical one-term approximation method.
A man is found dead in a room at \(12^{\circ} \mathrm{C}\). The surface temperature on his waist is measured to be \(23^{\circ} \mathrm{C}\), and the heat transfer coefficient is estimated to be $9 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\(. Modeling the body as a \)28-\mathrm{cm}$ diameter, \(1.80\)-m-long cylinder, estimate how long it has been since he died. Take the properties of the body to be $k=0.62 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\( and \)\alpha=0.15 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, and assume the initial temperature of the body to be \(36^{\circ} \mathrm{C}\). Solve this problem using the analytical one-term approximation method.
Thick slabs of stainless steel $(k=14.9 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\( and \)\left.\alpha=3.95 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)\( and copper \)(k=401 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\( and \)\left.\alpha=117 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)$ are placed under an array of laser diodes, which supply an energy pulse of \(5 \times 10^{7} \mathrm{~J} / \mathrm{m}^{2}\) instantaneously at \(t=0\) to both materials. The two slabs have a uniform initial temperature of \(20^{\circ} \mathrm{C}\). Determine the temperatures of both slabs at $5 \mathrm{~cm}\( from the surface and \)60 \mathrm{~s}$ after receiving an energy pulse from the laser diodes.
Carbon steel balls $\left(\rho=7830 \mathrm{~kg} / \mathrm{m}^{3}, k=64 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\right.\(, \)\left.c_{p}=434 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( initially at \)200^{\circ} \mathrm{C}\( are quenched in an oil bath at \)20^{\circ} \mathrm{C}$ for a period of \(3 \mathrm{~min}\). If the balls have a diameter of \(5 \mathrm{~cm}\) and the convection heat transfer coefficient is $450 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, the center temperature of the balls after quenching will be (Hint: Check the Biot number.) (a) \(30.3^{\circ} \mathrm{C}\) (b) \(46.1^{\circ} \mathrm{C}\) (c) \(55.4^{\circ} \mathrm{C}\) (d) \(68.9^{\circ} \mathrm{C}\) (e) \(79.4^{\circ} \mathrm{C}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.