Chapter 4: Problem 135
How does immersion chilling of poultry compare to forced-air chilling with respect to \((a)\) cooling time, \((b)\) moisture loss of poultry, and (c) microbial growth?
Chapter 4: Problem 135
How does immersion chilling of poultry compare to forced-air chilling with respect to \((a)\) cooling time, \((b)\) moisture loss of poultry, and (c) microbial growth?
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat are the factors that affect the quality of frozen fish?
Chickens with an average mass of \(2.2 \mathrm{~kg}\) and average specific heat of \(3.54 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\) are to be cooled by chilled water that enters a continuous-flow-type immersion chiller at \(0.5^{\circ} \mathrm{C}\). Chickens are dropped into the chiller at a uniform temperature of \(15^{\circ} \mathrm{C}\) at a rate of 500 chickens per hour and are cooled to an average temperature of \(3^{\circ} \mathrm{C}\) before they are taken out. The chiller gains heat from the surroundings at a rate of \(210 \mathrm{~kJ} / \mathrm{min}\). Determine \((a)\) the rate of heat removal from the chicken, in \(\mathrm{kW}\), and ( \(b\) ) the mass flow rate of water, in \(\mathrm{kg} / \mathrm{s}\), if the temperature rise of water is not to exceed \(2^{\circ} \mathrm{C}\).
During a fire, the trunks of some dry oak trees $\left(k=0.17 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\right.\( and \)\left.\alpha=1.28 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}\right)$ that are initially at a uniform temperature of \(30^{\circ} \mathrm{C}\) are exposed to hot gases at \(600^{\circ} \mathrm{C}\) for a period of \(4 \mathrm{~h}\), with a heat transfer coefficient of \(65 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) on the surface. The ignition temperature of the trees is \(410^{\circ} \mathrm{C}\). Treating the trunks of the trees as long cylindrical rods of diameter $20 \mathrm{~cm}$, determine if these dry trees will ignite as the fire sweeps through them. Solve this problem using the analytical one-term approximation method.
A large chunk of tissue at \(35^{\circ} \mathrm{C}\) with a thermal diffusivity of \(1 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}\) is dropped into iced water. The water is well-stirred so that the surface temperature of the tissue drops to \(0^{\circ} \mathrm{C}\) at time zero and remains at \(0^{\circ} \mathrm{C}\) at all times. The temperature of the tissue after 4 min at a depth of $1 \mathrm{~cm}$ is (a) \(5^{\circ} \mathrm{C}\) (b) \(30^{\circ} \mathrm{C}\) (c) \(25^{\circ} \mathrm{C}\) (d) \(20^{\circ} \mathrm{C}\) (e) \(10^{\circ} \mathrm{C}\)
A \(10-\mathrm{cm}\)-inner-diameter, 30-cm-long can filled with water initially at \(25^{\circ} \mathrm{C}\) is put into a household refrigerator at $3^{\circ} \mathrm{C}\(. The heat transfer coefficient on the surface of the can is \)14 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Assuming that the temperature of the water remains uniform during the cooling process, the time it takes for the water temperature to drop to \(5^{\circ} \mathrm{C}\) is (a) \(0.55 \mathrm{~h}\) (b) \(1.17 \mathrm{~h}\) (c) \(2.09 \mathrm{~h}\) (d) \(3.60 \mathrm{~h}\) (e) \(4.97 \mathrm{~h}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.