Chapter 4: Problem 133
It is claimed that beef can be stored for up to two years at $-23^{\circ} \mathrm{C}\( but no more than one year at \)-12^{\circ} \mathrm{C}$. Is this claim reasonable? Explain.
Chapter 4: Problem 133
It is claimed that beef can be stored for up to two years at $-23^{\circ} \mathrm{C}\( but no more than one year at \)-12^{\circ} \mathrm{C}$. Is this claim reasonable? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a cubic block whose sides are \(5 \mathrm{~cm}\) long and a cylindrical block whose height and diameter are also \(5 \mathrm{~cm}\). Both blocks are initially at \(20^{\circ} \mathrm{C}\) and are made of granite $\left(k=2.5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\right.\( and \)\left.\alpha=1.15 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)$. Now both blocks are exposed to hot gases at \(500^{\circ} \mathrm{C}\) in a furnace on all of their surfaces with a heat transfer coefficient of $40 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Determine the center temperature of each geometry after 10 , 20 , and \(60 \mathrm{~min}\). Solve this problem using the analytical oneterm approximation method.
A 30-cm-diameter, 4-m-high cylindrical column of a house made of concrete $\left(k=0.79 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \alpha=5.94 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}\right.\(, \)\rho=1600 \mathrm{~kg} / \mathrm{m}^{3}\(, and \)c_{p}=0.84 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ ) cooled to \(14^{\circ} \mathrm{C}\) during a cold night is heated again during the day by being exposed to ambient air at an average temperature of \(28^{\circ} \mathrm{C}\) with an average heat transfer coefficient of $14 \mathrm{~W} / \mathrm{m}^{2}\(. \)\mathrm{K}$. Using the analytical one-term approximation method, determine \((a)\) how long it will take for the column surface temperature to rise to \(27^{\circ} \mathrm{C}\), (b) the amount of heat transfer until the center temperature reaches to \(28^{\circ} \mathrm{C}\), and \((c)\) the amount of heat transfer until the surface temperature reaches \(27^{\circ} \mathrm{C}\).
Carbon steel balls $\left(\rho=7830 \mathrm{~kg} / \mathrm{m}^{3}, k=64 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\right.\(, \)\left.c_{p}=434 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( initially at \)200^{\circ} \mathrm{C}\( are quenched in an oil bath at \)20^{\circ} \mathrm{C}$ for a period of \(3 \mathrm{~min}\). If the balls have a diameter of \(5 \mathrm{~cm}\) and the convection heat transfer coefficient is $450 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, the center temperature of the balls after quenching will be (Hint: Check the Biot number.) (a) \(30.3^{\circ} \mathrm{C}\) (b) \(46.1^{\circ} \mathrm{C}\) (c) \(55.4^{\circ} \mathrm{C}\) (d) \(68.9^{\circ} \mathrm{C}\) (e) \(79.4^{\circ} \mathrm{C}\)
A large iron slab $\left(\rho=7870 \mathrm{~kg} / \mathrm{m}^{3}, c_{p}=447 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right.\(, and \)k=80.2 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$ was initially heated to a uniform temperature of \(150^{\circ} \mathrm{C}\) and then placed on a concrete floor $\left(\rho=1600 \mathrm{~kg} / \mathrm{m}^{3}, c_{p}=840 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right.\(, and \)\left.k=0.79 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\right)$. The concrete floor was initially at a uniform temperature of \(30^{\circ} \mathrm{C}\). Determine \((a)\) the surface temperature between the iron slab and concrete floor and \((b)\) the temperature of the concrete floor at the depth of \(25 \mathrm{~mm}\), if the surface temperature remains constant after \(15 \mathrm{~min}\).
Can the one-term approximate solutions for a plane wall exposed to convection on both sides be used for a plane wall with one side exposed to convection while the other side is insulated? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.