Chapter 4: Problem 120
A semi-infinite aluminum cylinder $(k=237 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\(, \)\alpha=9.71 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ ) of diameter \(D=15 \mathrm{~cm}\) is initially at a uniform temperature of \(T_{i}=115^{\circ} \mathrm{C}\). The cylinder is now placed in water at \(10^{\circ} \mathrm{C}\), where heat transfer takes place by convection with a heat transfer coefficient of $h=140 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\(. Determine the temperature at the center of the cylinder \)5 \mathrm{~cm}$ from the end surface 8 min after the start of cooling. Solve this problem using the analytical one-term approximation method.