Chapter 4: Problem 118
A short brass cylinder $\left(\rho=8530 \mathrm{~kg} / \mathrm{m}^{3}, c_{p}=0.389 \mathrm{~kJ} /\right.\( \)\mathrm{kg} \cdot \mathrm{K}, k=110 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\(, and \)\left.\alpha=3.39 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)\( of diameter \)4 \mathrm{~cm}$ and height \(20 \mathrm{~cm}\) is initially at a uniform temperature of $150^{\circ} \mathrm{C}\(. The cylinder is now placed in atmospheric air at \)20^{\circ} \mathrm{C}$, where heat transfer takes place by convection with a heat transfer coefficient of \(40 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Calculate \((a)\) the center temperature of the cylinder; \((b)\) the center temperature of the top surface of the cylinder; and (c) the total heat transfer from the cylinder \(15 \mathrm{~min}\) after the start of the cooling. Solve this problem using the analytical one-term approximation method.