Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider a short cylinder whose top and bottom surfaces are insulated. The cylinder is initially at a uniform temperature \(T_{i}\) and is subjected to convection from its side surface to a medium at temperature \(T_{\infty}\) with a heat transfer coefficient of \(h\). Is the heat transfer in this short cylinder oneor two-dimensional? Explain.

Short Answer

Expert verified
Provide an explanation for your answer.

Step by step solution

01

Define the problem and the geometry

We have a short cylinder with insulated top and bottom surfaces, meaning that there is no heat transfer through these surfaces. The cylinder is subjected to convection from its side surface, which is in contact with the medium at a temperature \(T_\infty\) and a heat transfer coefficient \(h\). We aim to find if the heat transfer in the cylinder is one-dimensional or two-dimensional.
02

Visualize the heat transfer process

Since the top and bottom surfaces of the cylinder are insulated, the only direction in which heat transfer can take place is through the side surface, along the radial direction (perpendicular to the axis of the cylinder). Therefore, heat transfer must occur outward from the center of the cylinder to the side surface, and then from the side surface of the cylinder to the external medium by convection.
03

Analyze the heat conduction in the radial direction

The heat conduction in the radial direction occurs due to the temperature difference between the center of the cylinder and the side surface. As the heat is transferred from the center of the cylinder to the side surface, the temperature distribution within the cylinder will change, and the temperature profile will develop along the radial direction.
04

Analyze the influence of the axial dimension

Since the top and bottom surfaces of the cylinder are insulated, there is no heat transfer in the axial direction (parallel to the axis of the cylinder). Thus, the temperature profile along the axial direction remains uniform. Because the temperature within the cylinder doesn't depend on the axial position, we can conclude that the heat transfer in the cylinder is one-dimensional.
05

Conclusion

The heat transfer in the short cylinder is one-dimensional since heat is only transferred in the radial direction, perpendicularly to the axis of the cylinder. The axial dimension does not affect the temperature distribution within the cylinder, as the top and bottom surfaces are insulated, which means no heat is transferred along the axial direction.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A potato may be approximated as a \(5.7-\mathrm{cm}\)-diameter solid sphere with the properties $\rho=910 \mathrm{~kg} / \mathrm{m}^{3}, c_{p}=4.25 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\(, \)k=0.68 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\(, and \)\alpha=1.76 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}\(. Twelve such potatoes initially at \)25^{\circ} \mathrm{C}$ are to be cooked by placing them in an oven maintained at \(250^{\circ} \mathrm{C}\) with a heat transfer coefficient of $95 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. The amount of heat transfer to the potatoes during a 30 -min period is (a) \(77 \mathrm{~kJ}\) (b) \(483 \mathrm{~kJ}\) (c) \(927 \mathrm{~kJ}\) (d) \(970 \mathrm{~kJ}\) (e) \(1012 \mathrm{~kJ}\)

A large cast iron container \((k=52 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) and \(\alpha=1.70 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\) ) with \(4-\mathrm{cm}\)-thick walls is initially at a uniform temperature of \(0^{\circ} \mathrm{C}\) and is filled with ice at \(0^{\circ} \mathrm{C}\). Now the outer surfaces of the container are exposed to hot water at $55^{\circ} \mathrm{C}$ with a very large heat transfer coefficient. Determine how long it will be before the ice inside the container starts melting. Also, taking the heat transfer coefficient on the inner surface of the container to be $250 \mathrm{~W} / \mathrm{m}^{2}\(, \)\mathrm{K}$, determine the rate of heat transfer to the ice through a \(1.2-\mathrm{m}\)-wide and \(2-\mathrm{m}\)-high section of the wall when steady operating conditions are reached. Assume the ice starts melting when its inner surface temperature rises to $0.1^{\circ} \mathrm{C}$.

What is the proper storage temperature of frozen poultry? What are the primary methods of freezing for poultry?

During a picnic on a hot summer day, the only available drinks were those at the ambient temperature of \(90^{\circ} \mathrm{F}\). In an effort to cool a 12 -fluid-oz drink in a can, which is 5 in high and has a diameter of $2.5 \mathrm{in}$, a person grabs the can and starts shaking it in the iced water of the chest at \(32^{\circ} \mathrm{F}\). The temperature of the drink can be assumed to be uniform at all times, and the heat transfer coefficient between the iced water and the aluminum can is $30 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$. Using the properties of water for the drink, estimate how long it will take for the canned drink to cool to \(40^{\circ} \mathrm{F}\). Solve this problem using lumped system analysis. Is the lumped system analysis applicable to this problem? Why?

A barefooted person whose feet are at \(32^{\circ} \mathrm{C}\) steps on a large aluminum block at \(20^{\circ} \mathrm{C}\). Treating both the feet and the aluminum block as semi-infinite solids, determine the contact surface temperature. What would your answer be if the person stepped on a wood block instead? At room temperature, the \(\sqrt{k \rho c_{p}}\) value is $24 \mathrm{~kJ} / \mathrm{m}^{2},{ }^{\circ} \mathrm{C}\( for aluminum, \)0.38 \mathrm{~kJ} / \mathrm{m}^{2},{ }^{\circ} \mathrm{C}\( for wood, and \)1.1 \mathrm{~kJ} / \mathrm{m}^{2},{ }^{\circ} \mathrm{C}$ for human flesh.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free