Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A plane brick wall \((k=0.7 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) is $10 \mathrm{~cm}$ thick. The thermal resistance of this wall per unit of wall area is (a) \(0.143 \mathrm{~m}^{2}, \mathrm{~K} / \mathrm{W}\) (b) \(0.250 \mathrm{~m}^{2} \cdot \mathrm{K} / \mathrm{W}\) (c) \(0.327 \mathrm{~m}^{2} \cdot \mathrm{K} / \mathrm{W}\) (d) \(0.448 \mathrm{~m}^{2} \cdot \mathrm{K} / \mathrm{W}\) (e) \(0.524 \mathrm{~m}^{2} \cdot \mathrm{K} / \mathrm{W}\)

Short Answer

Expert verified
Question: A brick wall with a thermal conductivity of 0.7 W/m·K and a thickness of 10 cm has a thermal resistance per unit area equal to: (a) 0.143 m²·K/W (b) 1.43 m²·K/W (c) 14.3 m²·K/W (d) 0.0143 m²·K/W Answer: (a) 0.143 m²·K/W

Step by step solution

01

Write the formula for thermal resistance.

The formula for thermal resistance (R) for a plane wall is given by: R = L / kA where L is the thickness of the wall, k is the thermal conductivity and A is the area of the wall. Since we need to find the thermal resistance per unit area, we can remove the area 'A' from the equation. So now our formula becomes: R = L / k
02

Substitute given values.

Now, let's substitute the given values in the formula: L = 10 cm = 0.1 m (converting cm to meters) k = 0.7 W/m·K R = (0.1 m) / (0.7 W/m·K)
03

Calculate the thermal resistance.

Now, let's calculate the thermal resistance: R = 0.1 / 0.7 = 0.1428571... m²·K/W
04

Choose the correct answer.

By comparing our calculated value to the given options, we can conclude that the closest value is the following: (a) 0.143 m²·K/W So the correct answer is (a) 0.143 m²·K/W.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

One wall of a refrigerated warehouse is \(10.0 \mathrm{~m}\) high and $5.0 \mathrm{~m}\( wide. The wall is made of three layers: \)1.0$-cm-thick aluminum \((k=200 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}), 8.0\)-cm-thick fiberglass \((k=0.038\) \(\mathrm{W} / \mathrm{m} \cdot \mathrm{K})\), and \(3.0\)-cm-thick gypsum board \((k=0.48 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\). The warehouse inside and outside temperatures are \(-10^{\circ} \mathrm{C}\) and \(20^{\circ} \mathrm{C}\), respectively, and the average value of both inside and outside heat transfer coefficients is \(40 \mathrm{~W} / \mathrm{m}^{2}\). \(\mathrm{K}\). (a) Calculate the rate of heat transfer across the warehouse wall in steady operation. (b) Suppose that 400 metal bolts ( $k=43 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\(, each \)2.0 \mathrm{~cm}\( in diameter and \)12.0 \mathrm{~cm}$ long, are used to fasten (i.e., hold together) the three wall layers. Calculate the rate of heat transfer for the "bolted" wall. (c) What is the percent change in the rate of heat transfer across the wall due to metal bolts?

A turbine blade made of a metal alloy $(k=17 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\( has a length of \)5.3 \mathrm{~cm}\(, a perimeter of \)11 \mathrm{~cm}\(, and a crosssectional area of \)5.13 \mathrm{~cm}^{2}$. The turbine blade is exposed to hot gas from the combustion chamber at \(973^{\circ} \mathrm{C}\) with a convection heat transfer coefficient of $538 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. The base of the turbine blade maintains a constant temperature of \(450^{\circ} \mathrm{C}\), and the tip is adiabatic. Determine the heat transfer rate to the turbine blade and the temperature at the tip.

The \(700 \mathrm{~m}^{2}\) ceiling of a building has a thermal resistance of \(0.52 \mathrm{~m}^{2} \cdot \mathrm{K} / \mathrm{W}\). The rate at which heat is lost through this ceiling on a cold winter day when the ambient temperature is \(-10^{\circ} \mathrm{C}\) and the interior is at \(20^{\circ} \mathrm{C}\) is (a) \(23.1 \mathrm{~kW}\) (b) \(40.4 \mathrm{~kW}\) (c) \(55.6 \mathrm{~kW}\) (d) \(68.1 \mathrm{~kW}\) (e) \(88.6 \mathrm{~kW}\)

Hot water is flowing at an average velocity of \(1.5 \mathrm{~m} / \mathrm{s}\) through a cast iron pipe \((k=52 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) whose inner and outer diameters are \(3 \mathrm{~cm}\) and \(3.5 \mathrm{~cm}\), respectively. The pipe passes through a \(15-\mathrm{m}\)-long section of a basement whose temperature is \(15^{\circ} \mathrm{C}\). If the temperature of the water drops from \(70^{\circ} \mathrm{C}\) to \(67^{\circ} \mathrm{C}\) as it passes through the basement and the heat transfer coefficient on the inner surface of the pipe is \(400 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), determine the combined convection and radiation heat transfer coefficient at the outer surface of the pipe.

Consider a tube for transporting steam that is not centered properly in a cylindrical insulation material \((k=0.73\) $\mathrm{W} / \mathrm{m} \cdot \mathrm{K})\(. The tube diameter is \)D_{1}=20 \mathrm{~cm}$ and the insulation diameter is \(D_{2}=40 \mathrm{~cm}\). The distance between the center of the tube and the center of the insulation is \(z=5 \mathrm{~mm}\). If the surface of the tube maintains a temperature of \(100^{\circ} \mathrm{C}\) and the outer surface temperature of the insulation is constant at \(30^{\circ} \mathrm{C}\),

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free