Chapter 3: Problem 2
Consider heat conduction through a plane wall. Does the energy content of the wall change during steady heat conduction? How about during transient conduction? Explain.
Chapter 3: Problem 2
Consider heat conduction through a plane wall. Does the energy content of the wall change during steady heat conduction? How about during transient conduction? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeHot water is flowing at an average velocity of \(1.5 \mathrm{~m} / \mathrm{s}\) through a cast iron pipe \((k=52 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) whose inner and outer diameters are \(3 \mathrm{~cm}\) and \(3.5 \mathrm{~cm}\), respectively. The pipe passes through a \(15-\mathrm{m}\)-long section of a basement whose temperature is \(15^{\circ} \mathrm{C}\). If the temperature of the water drops from \(70^{\circ} \mathrm{C}\) to \(67^{\circ} \mathrm{C}\) as it passes through the basement and the heat transfer coefficient on the inner surface of the pipe is \(400 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), determine the combined convection and radiation heat transfer coefficient at the outer surface of the pipe.
Hot water at an average temperature of \(53^{\circ} \mathrm{C}\) and an average velocity of \(0.4 \mathrm{~m} / \mathrm{s}\) is flowing through a \(5-\mathrm{m}\) section of a thin-walled hot-water pipe that has an outer diameter of $2.5 \mathrm{~cm}\(. The pipe passes through the center of a \)14-\mathrm{cm}$-thick wall filled with fiberglass insulation $(k=0.035 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\(. If the surfaces of the wall are at \)18^{\circ} \mathrm{C}\(, determine \)(a)$ the rate of heat transfer from the pipe to the air in the rooms and \((b)\) the temperature drop of the hot water as it flows through this 5 -m-long section of the wall.
A 0.2-cm-thick, 10-cm-high, and 15 -cm-long circuit board houses electronic components on one side that dissipate a total of \(15 \mathrm{~W}\) of heat uniformly. The board is impregnated with conducting metal fillings and has an effective thermal conductivity of $12 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. All the heat generated in the components is conducted across the circuit board and is dissipated from the back side of the board to a medium at \(37^{\circ} \mathrm{C}\), with a heat transfer coefficient of $45 \mathrm{~W} / \mathrm{m}^{2}, \mathrm{~K}$. (a) Determine the surface temperatures on the two sides of the circuit board. (b) Now a \(0.1\)-cm-thick, \(10-\mathrm{cm}\)-high, and 15 -cm-long aluminum plate $(k=237 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\( with \)200.2-\mathrm{cm}$-thick, 2 -cm-long, and 15 -cm-wide aluminum fins of rectangular profile are attached to the back side of the circuit board with a \(0.03-\mathrm{cm}\) thick epoxy adhesive $(k=1.8 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$. Determine the new temperatures on the two sides of the circuit board.
Explain how the fins enhance heat transfer from a surface. Also, explain how the addition of fins may actually decrease heat transfer from a surface.
The overall heat transfer coefficient (the \(U\)-value) of a wall under winter design conditions is \(U=1.40 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Determine the \(U\)-value of the wall under summer design conditions.
What do you think about this solution?
We value your feedback to improve our textbook solutions.