Chapter 3: Problem 192
A spherical vessel, \(3.0 \mathrm{~m}\) in diameter (and negligible wall thickness), is used for storing a fluid at a temperature of $0^{\circ} \mathrm{C}\(. The vessel is covered with a \)5.0$-cm-thick layer of an insulation \((k=0.20 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\). The surrounding air is at \(22^{\circ} \mathrm{C}\). The inside and outside heat transfer coefficients are 40 and 10 $\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{K}\(, respectively. Calculate \)(a)$ all thermal resistances, in \(\mathrm{K} / \mathrm{W},(b)\) the steady rate of heat transfer, and \((c)\) the temperature difference across the insulation layer.