Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The overall heat transfer coefficient (the \(U\)-value) of a wall under winter design conditions is \(U=1.40 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Determine the \(U\)-value of the wall under summer design conditions.

Short Answer

Expert verified
Answer: The U-value of a wall could change between winter and summer design conditions due to factors such as external temperature, humidity, and solar radiation. External temperatures are typically higher in the summer, which could influence the material properties of the wall and alter its U-value. Similarly, summer conditions usually have higher humidity levels, which could also affect the wall's material properties and heat transfer processes. Additionally, summer conditions have more solar radiation, which could increase heat transfer through the wall and potentially impact the U-value. To determine the U-value under summer conditions, additional information such as material properties, wall thickness, external temperature, humidity, and solar radiation would be required.

Step by step solution

01

Understanding the U-value

The U-value is a measure of the wall's ability to transfer heat from one side to the other. Higher U-values indicate poor insulation and greater thermal conductivity, whereas lower U-values indicate better insulation and lower thermal conductivity. U-value depends on several factors, such as material properties, wall thickness, and environmental conditions.
02

Factors affecting the U-value

The primary factors affecting the U-value of a wall are: 1. Material properties: Different materials have different thermal conductivities, which will affect the overall U-value. Materials with low thermal conductivity (good insulators) will have lower U-values. 2. Wall thickness: A thicker wall will have a lower U-value as it takes more time for heat to transfer through it. 3. Environmental conditions: External temperature and humidity can also influence the U-value as they can alter the wall's material properties and the way heat is transferred.
03

Difference between winter and summer conditions

Some factors that could vary between winter and summer conditions are: 1. External temperature: During summer, external temperatures are typically higher, which could influence the material properties of the wall and alter its U-value. 2. Humidity: Summer conditions usually have higher humidity levels, which could also influence the wall's material properties and heat transfer processes. 3. Solar radiation: Summer conditions generally have more solar radiation, which could increase the heat transfer through the wall and potentially affect the U-value.
04

Final thoughts about the U-value in summer design conditions

In conclusion, since we don't have all the necessary parameters to calculate a specific U-value for the wall under summer design conditions, we cannot provide an exact value. However, we have discussed the main factors that could affect the U-value and how they may vary between winter and summer. To determine the U-value under summer conditions, additional information such as material properties, wall thickness, external temperature, humidity, and solar radiation would be required.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 5 -m-diameter spherical tank is filled with liquid oxygen $\left(\rho=1141 \mathrm{~kg} / \mathrm{m}^{3}, c_{p}=1.71 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)\( at \)-184^{\circ} \mathrm{C}$. It is observed that the temperature of oxygen increases to \(-183^{\circ} \mathrm{C}\) in a 144-hour period. The average rate of heat transfer to the tank is (a) \(124 \mathrm{~W}\) (b) \(185 \mathrm{~W}\) (c) \(246 \mathrm{~W}\) (d) \(348 \mathrm{~W}\) (e) \(421 \mathrm{~W}\)

Consider a wall that consists of two layers, \(A\) and \(B\), with the following values: $k_{A}=1.2 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, L_{A}=8 \mathrm{~cm}\(, \)k_{B}=0.2 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, L_{B}=5 \mathrm{~cm}\(. If the temperature drop across the wall is \)18^{\circ} \mathrm{C}$, the rate of heat transfer through the wall per unit area of the wall is (a) \(56.8 \mathrm{~W} / \mathrm{m}^{2}\) (b) \(72.1 \mathrm{~W} / \mathrm{m}^{2}\) (c) \(114 \mathrm{~W} / \mathrm{m}^{2}\) (d) \(201 \mathrm{~W} / \mathrm{m}^{2}\) (e) \(270 \mathrm{~W} / \mathrm{m}^{2}\)

A stainless steel plate is connected to a copper plate by long ASTM B98 copper-silicon bolts of \(9.5 \mathrm{~mm}\) in diameter. The portion of the bolts exposed to convection heat transfer with air is \(5 \mathrm{~cm}\) long. The air temperature for convection is at \(20^{\circ} \mathrm{C}\) with a convection heat transfer coefficient of $5 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\(. The thermal conductivity of the bolt is known to be \)36 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. The copper plate has a uniform temperature of \(70^{\circ} \mathrm{C}\). If each bolt is estimated to have a rate of heat loss to convection of \(5 \mathrm{~W}\), determine the temperature \(T_{b}\) at the upper surface of the stainless steel plate. According to the ASME Code for Process Piping (ASME B31.3-2014, Table A-2M), the maximum use temperature for the ASTM B 98 copper-silicon bolt is \(149^{\circ} \mathrm{C}\). Does the use of the ASTM B 98 bolts in this condition comply with the ASME code?

A 3-m-diameter spherical tank containing some radioactive material is buried in the ground \((k=1.4 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\). The distance between the top surface of the tank and the ground surface is $4 \mathrm{~m}$. If the surface temperatures of the tank and the ground are \(140^{\circ} \mathrm{C}\) and \(15^{\circ} \mathrm{C}\), respectively, determine the rate of heat transfer from the tank.

In a combined heat and power (CHP) generation process, by-product heat is used for domestic or industrial heating purposes. Hot steam is carried from a CHP generation plant by a tube with diameter of \(127 \mathrm{~mm}\) centered at a square crosssection solid bar made of concrete with thermal conductivity of \(1.7 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). The surface temperature of the tube is constant at \(120^{\circ} \mathrm{C}\), while the square concrete bar is exposed to air with temperature of \(-5^{\circ} \mathrm{C}\) and convection heat transfer coefficient of \(20 \mathrm{~W} / \mathrm{m}^{2}\). \(\mathrm{K}\). If the temperature difference between the outer surface of the square concrete bar and the ambient air is to be maintained at $5^{\circ} \mathrm{C}$, determine the width of the square concrete bar and the rate of heat loss per meter length. Answers: $1.32 \mathrm{~m}, 530 \mathrm{~W} / \mathrm{m}$

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free