Consider a wall that consists of two layers, \(A\) and \(B\), with the following
values: $k_{A}=1.2 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, L_{A}=8
\mathrm{~cm}\(, \)k_{B}=0.2 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, L_{B}=5
\mathrm{~cm}\(. If the temperature drop across the wall is \)18^{\circ}
\mathrm{C}$, the rate of heat transfer through the wall per unit area of the
wall is
(a) \(56.8 \mathrm{~W} / \mathrm{m}^{2}\)
(b) \(72.1 \mathrm{~W} / \mathrm{m}^{2}\)
(c) \(114 \mathrm{~W} / \mathrm{m}^{2}\)
(d) \(201 \mathrm{~W} / \mathrm{m}^{2}\)
(e) \(270 \mathrm{~W} / \mathrm{m}^{2}\)