Chapter 3: Problem 151
What is a conduction shape factor? How is it related to the thermal resistance?
Chapter 3: Problem 151
What is a conduction shape factor? How is it related to the thermal resistance?
All the tools & learning materials you need for study success - in one app.
Get started for freeSteam at \(280^{\circ} \mathrm{C}\) flows in a stainless steel pipe $(k=15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$ whose inner and outer diameters are \(5 \mathrm{~cm}\) and \(5.5 \mathrm{~cm}\), respectively. The pipe is covered with \(3-\mathrm{cm}\)-thick glass wool insulation $(k=0.038 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\(. Heat is lost to the surroundings at \)5^{\circ} \mathrm{C}$ by natural convection and radiation, with a combined natural convection and radiation heat transfer coefficient of $22 \mathrm{~W} / \mathrm{m}^{2}$. . Taking the heat transfer coefficient inside the pipe to be \(80 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), determine the rate of heat loss from the steam per unit length of the pipe. Also determine the temperature drops across the pipe shell and the insulation.
A plane brick wall \((k=0.7 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) is $10 \mathrm{~cm}$ thick. The thermal resistance of this wall per unit of wall area is (a) \(0.143 \mathrm{~m}^{2}, \mathrm{~K} / \mathrm{W}\) (b) \(0.250 \mathrm{~m}^{2} \cdot \mathrm{K} / \mathrm{W}\) (c) \(0.327 \mathrm{~m}^{2} \cdot \mathrm{K} / \mathrm{W}\) (d) \(0.448 \mathrm{~m}^{2} \cdot \mathrm{K} / \mathrm{W}\) (e) \(0.524 \mathrm{~m}^{2} \cdot \mathrm{K} / \mathrm{W}\)
Consider a very long rectangular fin attached to a flat surface such that the temperature at the end of the fin is essentially that of the surrounding air, i.e., \(20^{\circ} \mathrm{C}\). Its width is \(5.0 \mathrm{~cm}\); thickness is \(1.0 \mathrm{~mm}\); thermal conductivity is $200 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\(; and base temperature is \)40^{\circ} \mathrm{C}$. The heat transfer coefficient is \(20 \mathrm{~W} / \mathrm{m}^{2}\). . Estimate the fin temperature at a distance of \(5.0 \mathrm{~cm}\) from the base and the rate of heat loss from the entire fin.
A spherical vessel, \(3.0 \mathrm{~m}\) in diameter (and negligible wall thickness), is used for storing a fluid at a temperature of $0^{\circ} \mathrm{C}\(. The vessel is covered with a \)5.0$-cm-thick layer of an insulation \((k=0.20 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\). The surrounding air is at \(22^{\circ} \mathrm{C}\). The inside and outside heat transfer coefficients are 40 and 10 $\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{K}\(, respectively. Calculate \)(a)$ all thermal resistances, in \(\mathrm{K} / \mathrm{W},(b)\) the steady rate of heat transfer, and \((c)\) the temperature difference across the insulation layer.
Hot water flows in a 1-m-long section of a pipe that is made of acrylonitrile butadiene styrene (ABS) thermoplastic. The \(\mathrm{ABS}\) pipe section has an inner diameter of \(D_{1}=22 \mathrm{~mm}\) and an outer diameter of $D_{2}=27 \mathrm{~mm}\(. The thermal conductivity of the ABS pipe wall is \)0.1 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. The outer pipe surface is exposed to convection heat transfer with air at \(20^{\circ} \mathrm{C}\) and $h=10 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$. The water flowing inside the pipe has a convection heat transfer coefficient of $50 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. According to the ASME Code for Process Piping (ASME B31.3-2014, Table B-1), the maximum recommended temperature for \(\mathrm{ABS}\) pipe is \(80^{\circ} \mathrm{C}\). Determine the maximum temperature of the water flowing in the pipe, such that the ABS pipe is operating at the recommended temperature or lower. What is the temperature at the outer pipe surface when the water is at maximum temperature?
What do you think about this solution?
We value your feedback to improve our textbook solutions.