Chapter 3: Problem 14
Consider steady one-dimensional heat transfer through a multilayer medium. If the rate of heat transfer \(\dot{Q}\) is known, explain how you would determine the temperature drop across each layer.
Chapter 3: Problem 14
Consider steady one-dimensional heat transfer through a multilayer medium. If the rate of heat transfer \(\dot{Q}\) is known, explain how you would determine the temperature drop across each layer.
All the tools & learning materials you need for study success - in one app.
Get started for freeCircular cooling fins of diameter \(D=1 \mathrm{~mm}\) and length $L=30 \mathrm{~mm}\(, made of copper \)(k=380 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$, are used to enhance heat transfer from a surface that is maintained at temperature \(T_{s 1}=132^{\circ} \mathrm{C}\). Each rod has one end attached to this surface \((x=0)\), while the opposite end \((x=L)\) is joined to a second surface, which is maintained at \(T_{s 2}=0^{\circ} \mathrm{C}\). The air flowing between the surfaces and the rods is also at \(T_{\infty}=0^{\circ} \mathrm{C}\). and the convection coefficient is $h=100 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. (a) Express the function \(\theta(x)=T(x)-T_{\infty}\) along a fin, and calculate the temperature at \(x=L / 2\). (b) Determine the rate of heat transferred from the hot surface through each fin and the fin effectiveness. Is the use of fins justified? Why? (c) What is the total rate of heat transfer from a \(10-\mathrm{cm}\) by \(10-\mathrm{cm}\) section of the wall, which has 625 uniformly distributed fins? Assume the same convection coefficient for the fin and for the unfinned wall surface.
Hot air is to be cooled as it is forced to flow through the tubes exposed to atmospheric air. Fins are to be added in order to enhance heat transfer. Would you recommend attaching the fins inside or outside the tubes? Why? When would you recommend attaching fins both inside and outside the tubes?
One wall of a refrigerated warehouse is \(10.0 \mathrm{~m}\) high and $5.0 \mathrm{~m}\( wide. The wall is made of three layers: \)1.0$-cm-thick aluminum \((k=200 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}), 8.0\)-cm-thick fiberglass \((k=0.038\) \(\mathrm{W} / \mathrm{m} \cdot \mathrm{K})\), and \(3.0\)-cm-thick gypsum board \((k=0.48 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\). The warehouse inside and outside temperatures are \(-10^{\circ} \mathrm{C}\) and \(20^{\circ} \mathrm{C}\), respectively, and the average value of both inside and outside heat transfer coefficients is \(40 \mathrm{~W} / \mathrm{m}^{2}\). \(\mathrm{K}\). (a) Calculate the rate of heat transfer across the warehouse wall in steady operation. (b) Suppose that 400 metal bolts ( $k=43 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\(, each \)2.0 \mathrm{~cm}\( in diameter and \)12.0 \mathrm{~cm}$ long, are used to fasten (i.e., hold together) the three wall layers. Calculate the rate of heat transfer for the "bolted" wall. (c) What is the percent change in the rate of heat transfer across the wall due to metal bolts?
A room at \(20^{\circ} \mathrm{C}\) air temperature is losing heat to the outdoor air at \(0^{\circ} \mathrm{C}\) at a rate of \(1000 \mathrm{~W}\) through a \(2.5\)-m-high and 4-m-long wall. Now the wall is insulated with \(2-\mathrm{cm}\)-thick insulation with a conductivity of $0.02 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. Determine the rate of heat loss from the room through this wall after insulation. Assume the heat transfer coefficients on the inner and outer surfaces of the wall, the room air temperature, and the outdoor air temperature remain unchanged. Also, disregard radiation. (a) \(20 \mathrm{~W}\) (b) \(561 \mathrm{~W}\) (c) \(388 \mathrm{~W}\) (d) \(167 \mathrm{~W}\) (e) \(200 \mathrm{~W}\)
A pipe is insulated such that the outer radius of the insulation is less than the critical radius. Now the insulation is taken off. Will the rate of heat transfer from the pipe increase or decrease for the same pipe surface temperature?
What do you think about this solution?
We value your feedback to improve our textbook solutions.