Chapter 3: Problem 13
How does the thermal resistance network associated with a single-layer plane wall differ from the one associated with a five-layer composite wall?
Chapter 3: Problem 13
How does the thermal resistance network associated with a single-layer plane wall differ from the one associated with a five-layer composite wall?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider two finned surfaces that are identical except that the fins on the first surface are formed by casting or extrusion, whereas they are attached to the second surface afterwards by welding or tight fitting. For which case do you think the fins will provide greater enhancement in heat transfer? Explain.
A spherical vessel, \(3.0 \mathrm{~m}\) in diameter (and negligible wall thickness), is used for storing a fluid at a temperature of $0^{\circ} \mathrm{C}\(. The vessel is covered with a \)5.0$-cm-thick layer of an insulation \((k=0.20 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\). The surrounding air is at \(22^{\circ} \mathrm{C}\). The inside and outside heat transfer coefficients are 40 and 10 $\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{K}\(, respectively. Calculate \)(a)$ all thermal resistances, in \(\mathrm{K} / \mathrm{W},(b)\) the steady rate of heat transfer, and \((c)\) the temperature difference across the insulation layer.
A \(0.4-\mathrm{cm}\)-thick, 12 -cm-high, and \(18-\mathrm{cm}\)-long circuit board houses 80 closely spaced logic chips on one side, each dissipating $0.04 \mathrm{~W}$. The board is impregnated with copper fillings and has an effective thermal conductivity of $30 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. All the heat generated in the chips is conducted across the circuit board and is dissipated from the back side of the board to a medium at \(40^{\circ} \mathrm{C}\), with a heat transfer coefficient of $52 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. (a) Determine the temperatures on the two sides of the circuit board. (b) Now a \(0.2-\mathrm{cm}\)-thick, \(12-\mathrm{cm}\)-high, and \(18-\mathrm{cm}\)-long aluminum plate $(k=237 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\( with \)8642 \cdot \mathrm{cm}-$ long aluminum pin fins of diameter \(0.25 \mathrm{~cm}\) is attached to the back side of the circuit board with a \(0.02-\mathrm{cm}\)-thick epoxy adhesive \((k=1.8 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\). Determine the new temperatures on the two sides of the circuit board.
A hot surface at \(100^{\circ} \mathrm{C}\) is to be cooled by attaching 3 -cm- long, \(0.25\)-cm-diameter aluminum pin fins \((k=237\) $\mathrm{W} / \mathrm{m} \cdot \mathrm{K})\( to it, with a center-to-center distance of \)0.6 \mathrm{~cm}\(. The temperature of the surrounding medium is \)30^{\circ} \mathrm{C}\(, and the heat transfer coefficient on the surfaces is \)35 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Determine the rate of heat transfer from the surface for a \(1-\mathrm{m} \times 1-\mathrm{m}\) section of the plate. Also determine the overall effectiveness of the fins.
Circular cooling fins of diameter \(D=1 \mathrm{~mm}\) and length $L=30 \mathrm{~mm}\(, made of copper \)(k=380 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$, are used to enhance heat transfer from a surface that is maintained at temperature \(T_{s 1}=132^{\circ} \mathrm{C}\). Each rod has one end attached to this surface \((x=0)\), while the opposite end \((x=L)\) is joined to a second surface, which is maintained at \(T_{s 2}=0^{\circ} \mathrm{C}\). The air flowing between the surfaces and the rods is also at \(T_{\infty}=0^{\circ} \mathrm{C}\). and the convection coefficient is $h=100 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. (a) Express the function \(\theta(x)=T(x)-T_{\infty}\) along a fin, and calculate the temperature at \(x=L / 2\). (b) Determine the rate of heat transferred from the hot surface through each fin and the fin effectiveness. Is the use of fins justified? Why? (c) What is the total rate of heat transfer from a \(10-\mathrm{cm}\) by \(10-\mathrm{cm}\) section of the wall, which has 625 uniformly distributed fins? Assume the same convection coefficient for the fin and for the unfinned wall surface.
What do you think about this solution?
We value your feedback to improve our textbook solutions.