Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Hot air is to be cooled as it is forced to flow through the tubes exposed to atmospheric air. Fins are to be added in order to enhance heat transfer. Would you recommend attaching the fins inside or outside the tubes? Why? When would you recommend attaching fins both inside and outside the tubes?

Short Answer

Expert verified
Answer: Fins should be attached outside the tubes to enhance heat transfer and efficiently cool the hot air flowing through the tubes. Fins should be attached both inside and outside the tubes only in exceptional situations where the heat transfer rate inside the tubes is insufficient and attaching fins outside the tubes is not enough to achieve efficient cooling.

Step by step solution

01

Understanding the purpose of fins

Fins are used to increase the surface area available for heat transfer, thereby improving the efficiency of the heat transfer process. As hot air flows through the tubes, heat is transferred from the hot air to the cooler atmospheric air. The goal is to optimize this heat transfer process to cool the hot air efficiently.
02

Attaching fins inside the tubes

Attaching fins inside the tubes would increase the surface area in contact with the hot air, allowing more heat to be transferred to the tube walls. However, the main aim is to transfer heat from the hot air to the atmosphere, so this option could potentially increase heat transfer inside the tubes but might not enhance the overall heat transfer rate effectively.
03

Attaching fins outside the tubes

Attaching fins outside the tubes would increase the surface area in contact with atmospheric air, which could significantly enhance the overall heat transfer rate as the heat from the hot air inside the tubes is transferred to the cooler atmospheric air outside. This results in more effective and efficient cooling of the hot air inside the tubes and is generally the preferred option.
04

Attaching fins both inside and outside the tubes

In some situations, it may be advantageous to attach fins both inside and outside the tubes. This could be beneficial when the heat transfer rate inside the tubes is insufficient even with efficient heat transfer from the tube walls to the atmospheric air. Such scenarios could arise, for example, when dealing with highly viscous fluids or very high flow rates that impede heat transfer or when the temperature difference between the hot air and atmospheric air is very low.
05

Recommendation

Based on the analysis above, it would be recommended to attach the fins outside the tubes because it provides better overall heat transfer and efficient cooling of the hot air as it flows through the tubes. Attaching fins inside the tubes should only be considered in exceptional situations where the heat transfer rate inside the tubes is insufficient and attaching fins outside the tubes is not enough to achieve efficient cooling.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The heat transfer surface area of a fin is equal to the sum of all surfaces of the fin exposed to the surrounding medium, including the surface area of the fin tip. Under what conditions can we neglect heat transfer from the fin tip?

A 0.6-m-diameter, 1.9-m-long cylindrical tank containing liquefied natural gas (LNG) at \(-160^{\circ} \mathrm{C}\) is placed at the center of a \(1.9\)-m-long \(1.4-\mathrm{m} \times 1.4-\mathrm{m}\) square solid bar made of an insulating material with \(k=0.0002 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). If the outer surface temperature of the bar is \(12^{\circ} \mathrm{C}\), determine the rate of heat transfer to the tank. Also, determine the LNG temperature after one month. Take the density and the specific heat of LNG to be $425 \mathrm{~kg} / \mathrm{m}^{3}\( and \)3.475 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$, respectively.

Steam in a heating system flows through tubes whose outer diameter is $3 \mathrm{~cm}\( and whose walls are maintained at a temperature of \)120^{\circ} \mathrm{C}\(. Circular aluminum alloy fins \)(k=180 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\( of outer diameter \)6 \mathrm{~cm}$ and constant thickness \(t=2 \mathrm{~mm}\) are attached to the tube, as shown in Fig. P3-201. The space between the fins is \(3 \mathrm{~mm}\), and thus there are 200 fins per meter length of the tube. Heat is transferred to the surrounding air at \(25^{\circ} \mathrm{C}\), with a combined heat transfer coefficient of $60 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Determine the increase in heat transfer from the tube per meter of its length as a result of adding fins.

A 2.2-m-diameter spherical steel tank filled with iced water at $0^{\circ} \mathrm{C}$ is buried underground at a location where the thermal conductivity of the soil is \(k=0.55 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). The distance between the tank center and the ground surface is \(2.4 \mathrm{~m}\). For a ground surface temperature of \(18^{\circ} \mathrm{C}\), determine the rate of heat transfer to the iced water in the tank. What would your answer be if the soil temperature were \(18^{\circ} \mathrm{C}\) and the ground surface were insulated?

A 25-cm-diameter, 2.4-m-long vertical cylinder containing ice at $0^{\circ} \mathrm{C}$ is buried right under the ground. The cylinder is thin-shelled and is made of a high-thermal-conductivity material. The surface temperature and the thermal conductivity of the ground are \(18^{\circ} \mathrm{C}\) and $0.85 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$, respectively. The rate of heat transfer to the cylinder is (a) \(37.2 \mathrm{~W}\) (b) \(63.2 \mathrm{~W}\) (c) \(158 \mathrm{~W}\) (d) \(480 \mathrm{~W}\) (e) \(1210 \mathrm{~W}\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free