Chapter 3: Problem 105
Consider an insulated pipe exposed to the atmosphere. Will the critical radius of insulation be greater on calm days or on windy days? Why?
Chapter 3: Problem 105
Consider an insulated pipe exposed to the atmosphere. Will the critical radius of insulation be greater on calm days or on windy days? Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a wall that consists of two layers, \(A\) and \(B\), with the following values: $k_{A}=1.2 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, L_{A}=8 \mathrm{~cm}\(, \)k_{B}=0.2 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, L_{B}=5 \mathrm{~cm}\(. If the temperature drop across the wall is \)18^{\circ} \mathrm{C}$, the rate of heat transfer through the wall per unit area of the wall is (a) \(56.8 \mathrm{~W} / \mathrm{m}^{2}\) (b) \(72.1 \mathrm{~W} / \mathrm{m}^{2}\) (c) \(114 \mathrm{~W} / \mathrm{m}^{2}\) (d) \(201 \mathrm{~W} / \mathrm{m}^{2}\) (e) \(270 \mathrm{~W} / \mathrm{m}^{2}\)
One wall of a refrigerated warehouse is \(10.0 \mathrm{~m}\) high and $5.0 \mathrm{~m}\( wide. The wall is made of three layers: \)1.0$-cm-thick aluminum \((k=200 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}), 8.0\)-cm-thick fiberglass \((k=0.038\) \(\mathrm{W} / \mathrm{m} \cdot \mathrm{K})\), and \(3.0\)-cm-thick gypsum board \((k=0.48 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\). The warehouse inside and outside temperatures are \(-10^{\circ} \mathrm{C}\) and \(20^{\circ} \mathrm{C}\), respectively, and the average value of both inside and outside heat transfer coefficients is \(40 \mathrm{~W} / \mathrm{m}^{2}\). \(\mathrm{K}\). (a) Calculate the rate of heat transfer across the warehouse wall in steady operation. (b) Suppose that 400 metal bolts ( $k=43 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\(, each \)2.0 \mathrm{~cm}\( in diameter and \)12.0 \mathrm{~cm}$ long, are used to fasten (i.e., hold together) the three wall layers. Calculate the rate of heat transfer for the "bolted" wall. (c) What is the percent change in the rate of heat transfer across the wall due to metal bolts?
Consider a house with a flat roof whose outer dimensions are $12 \mathrm{~m} \times 12 \mathrm{~m}\(. The outer walls of the house are \)6 \mathrm{~m}$ high. The walls and the roof of the house are made of 20 -cm-thick concrete $(k=0.75 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$. The temperatures of the inner and outer surfaces of the house are \(15^{\circ} \mathrm{C}\) and $3^{\circ} \mathrm{C}$, respectively. Accounting for the effects of the edges of adjoining surfaces, determine the rate of heat loss from the house through its walls and the roof. What is the error involved in ignoring the effects of the edges and corners and treating the roof as a $12-\mathrm{m} \times 12-\mathrm{m}\( surface and the walls as \)6-\mathrm{m} \times 12-\mathrm{m}$ surfaces for simplicity?
A row of 3 -ft-long and 1-in-diameter used uranium fuel rods that are still radioactive are buried in the ground parallel to each other with a center-to- center distance of 8 in at a depth of \(15 \mathrm{ft}\) from the ground surface at a location where the thermal conductivity of the soil is $0.6 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}$. If the surface temperatures of the rods and the ground are \(350^{\circ} \mathrm{F}\) and \(60^{\circ} \mathrm{F}\), respectively, determine the rate of heat transfer from the fuel rods to the atmosphere through the soil.
What is the value of conduction shape factors in engineering?
What do you think about this solution?
We value your feedback to improve our textbook solutions.