Chapter 2: Problem 89
Consider a large 3-cm-thick stainless steel plate $(k=15.1 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$ in which heat is generated uniformly at a rate of \(5 \times 10^{5} \mathrm{~W} / \mathrm{m}^{3}\). Both sides of the plate are exposed to an environment at \(30^{\circ} \mathrm{C}\) with a heat transfer coefficient of \(60 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Explain where in the plate the highest and the lowest temperatures will occur, and determine their values.