Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the uniform heating of a plate in an environment at a constant temperature. Is it possible for part of the heat generated in the left half of the plate to leave the plate through the right surface? Explain.

Short Answer

Expert verified
Answer: No, it is not possible for part of the heat generated in the left half of the plate to leave the plate through the right surface, given the uniform heating and negligible temperature difference between the left half and right surface.

Step by step solution

01

Understand the basics of heat transfer

In the context of this problem, heat transfer occurs when there's a temperature difference between two points or objects. There are three primary methods of heat transfer (conduction, convection, and radiation). As the plate is solid, only conduction needs to be considered in this problem. Conduction is the transfer of heat between different points in a continuous medium. It is typically driven by a temperature differential.
02

Identify the temperature differences on the plate

In the given exercise, the plate is being uniformly heated. This means that the entire plate is being heated evenly, and therefore, there will be no significant temperature difference across the left and right halves of the plate.
03

Analyze the relationship between temperature difference and heat transfer

In order for heat transfer to occur, there needs to be a temperature difference between the regions where the heat is being generated (left half) and the region where the heat is supposed to exit (right surface). Given that the plate is uniformly heated, the temperature difference between the left half and right surface is negligible.
04

Conclude whether heat transfer could occur through the right surface

Since there's no significant temperature difference within the plate and between the left half and right surface, it is not possible for part of the heat generated in the left half of the plate to leave through the right surface. Instead, the heat generated would more likely be distributed evenly throughout the plate. In summary, no, it is not possible for part of the heat generated in the left half of the plate to leave the plate through the right surface, given the uniform heating and negligible temperature difference between the left half and right surface.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A flat-plate solar collector is used to heat water by having water flow through tubes attached at the back of the thin solar absorber plate. The absorber plate has an emissivity and an absorptivity of \(0.9\). The top surface \((x=0)\) temperature of the absorber is \(T_{0}=35^{\circ} \mathrm{C}\), and solar radiation is incident on the absorber at $500 \mathrm{~W} / \mathrm{m}^{2}\( with a surrounding temperature of \)0^{\circ} \mathrm{C}$. The convection heat transfer coefficient at the absorber surface is $5 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, while the ambient temperature is \(25^{\circ} \mathrm{C}\). Show that the variation of temperature in the absorber plate can be expressed as $T(x)=-\left(\dot{q}_{0} / k\right) x+T_{0}\(, and determine net heat flux \)\dot{q}_{0}$ absorbed by the solar collector.

How is integration related to derivation?

Consider a solid cylindrical rod whose side surface is maintained at a constant temperature while the end surfaces are perfectly insulated. The thermal conductivity of the rod material is constant, and there is no heat generation. It is claimed that the temperature in the radial direction within the rod will not vary during steady heat conduction. Do you agree with this claim? Why?

A circular metal pipe has a wall thickness of \(10 \mathrm{~mm}\) and an inner diameter of \(10 \mathrm{~cm}\). The pipe's outer surface is subjected to a uniform heat flux of \(5 \mathrm{~kW} / \mathrm{m}^{2}\) and has a temperature of \(500^{\circ} \mathrm{C}\). The metal pipe has a variable thermal conductivity given as \(k(T)=k_{0}(1+\beta T)\), where $k_{0}=7.5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\(, \)\beta=0.0012 \mathrm{~K}^{-1}\(, and \)T$ is in \(\mathrm{K}\). Determine the inner surface temperature of the pipe.

A cylindrical fuel rod $(k=30 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}) 2 \mathrm{~cm}$ in diameter is encased in a concentric tube and cooled by water. The fuel rod generates heat uniformly at a rate of $100 \mathrm{MW} / \mathrm{m}^{3}$, and the average temperature of the cooling water is \(75^{\circ} \mathrm{C}\) with a convection heat transfer coefficient of $2500 \mathrm{~W} / \mathrm{m}^{2}\(. \)\mathrm{K}$. The operating pressure of the cooling water is such that the surface temperature of the fuel rod must be kept below \(200^{\circ} \mathrm{C}\) to prevent the cooling water from reaching the critical heat flux (CHF). The critical heat flux is a thermal limit at which a boiling crisis can occur that causes overheating on the fuel rod surface and leads to damage. Determine the variation of temperature in the fuel rod and the temperature of the fuel rod surface. Is the surface of the fuel rod adequately cooled?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free