Chapter 2: Problem 71
Consider a steam pipe of length \(L=30 \mathrm{ft}\), inner radius $r_{1}=2 \mathrm{in}\(, outer radius \)r_{2}=2.4 \mathrm{in}$, and thermal conductivity $k=7.2 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}$. Steam is flowing through the pipe at an average temperature of \(250^{\circ} \mathrm{F}\), and the average convection heat transfer coefficient on the inner surface is given to be $h=12 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}$. If the average temperature on the outer surfaces of the pipe is \(T_{2}=160^{\circ} \mathrm{F},(a)\) express the differential equation and the boundary conditions for steady onedimensional heat conduction through the pipe, \((b)\) obtain a relation for the variation of temperature in the pipe by solving the differential equation, and (c) evaluate the rate of heat loss from the steam through the pipe.