Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In order to size the compressor of a new refrigerator, we wish to determine the rate of heat transfer from the kitchen air into the refrigerated space through the walls, door, and the top and bottom sections of the refrigerator. In your analysis, would you treat this as a transient or as a steady-state heat transfer problem? Also, would you consider the heat transfer to be one- dimensional or multidimensional? Explain.

Short Answer

Expert verified
Answer: The heat transfer problem in a refrigerator can be treated as a steady-state and multidimensional problem.

Step by step solution

01

1. Transient vs. Steady-State Heat Transfer

A transient heat transfer problem is one in which the temperature distribution changes with time. On the other hand, a steady-state heat transfer problem involves no time dependency in the temperature distribution. Considering a refrigerator in normal operation, once the desired temperature is reached inside the refrigerated space, the compressor works to maintain this temperature with minimal fluctuations. Thus, we can consider the variations in temperature to be negligible over time. Therefore, we can treat this heat transfer problem as a steady-state problem.
02

2. One-Dimensional vs. Multidimensional Heat Transfer

In one-dimensional heat transfer, temperature variations occur in only one direction, and the heat transfer happens mainly in that direction. In multidimensional heat transfer, the temperature varies in more than one direction, and the heat transfer occurs in multiple directions. The heat transfer through the walls, door, and top and bottom sections of a refrigerator will occur in multiple directions. This is mainly because of the complex geometry of a refrigerator and the fact that the heat transfer takes place through different materials, each having its own thermal conductivity. So, we should consider this heat transfer problem as multidimensional.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What kinds of differential equations can be solved by direct integration?

A long electrical resistance wire of radius $k_{\text {wirc }}=15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. Heat is generated uniformly in the wire as a result of resistance heating at a constant rate of $1.2 \mathrm{~W} / \mathrm{cm}^{3}$. The wire is covered with polyethylene insulation with a thickness of \(0.5 \mathrm{~cm}\) and thermal conductivity of $k_{\text {ins }}=0.4 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. The outer surface of the insulation is subjected to convection and radiation with the surroundings at \(20^{\circ} \mathrm{C}\). The combined convection and radiation heat transfer coefficients is \(7 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Formulate the temperature profiles for the wire and the polyethylene insulation. Use the temperature profiles to determine the temperature at the interface of the wire and the insulation and the temperature at the center of the wire. The ASTM D1351 standard specifies that thermoplastic polyethylene insulation is suitable for use on electrical wire with operation at temperatures up to \(75^{\circ} \mathrm{C}\). Under these conditions, does the polyethylene insulation for the wire meet the ASTM D1351 standard?

A spherical container with an inner radius \(r_{1}=1 \mathrm{~m}\) and an outer radius \(r_{2}=1.05 \mathrm{~m}\) has its inner surface subjected to a uniform heat flux of \(\dot{q}_{1}=7 \mathrm{~kW} / \mathrm{m}^{2}\). The outer surface of the container has a temperature \(T_{2}=25^{\circ} \mathrm{C}\), and the container wall thermal conductivity is $k=1.5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. Show that the variation of temperature in the container wall can be expressed as $T(r)=\left(\dot{q}_{1} r_{1}^{2} / k\right)\left(1 / r-1 / r_{2}\right)+T_{2}$ and determine the temperature of the inner surface of the container at \(r=r_{1}\).

Consider the uniform heating of a plate in an environment at a constant temperature. Is it possible for part of the heat generated in the left half of the plate to leave the plate through the right surface? Explain.

A plane wall of thickness \(L\) is subjected to convection at both surfaces with ambient temperature \(T_{\infty \text { el }}\) and heat transfer coefficient \(h_{1}\) at the inner surface and corresponding \(T_{\infty 2}\) and \(h_{2}\) values at the outer surface. Taking the positive direction of \(x\) to be from the inner surface to the outer surface, the correct expression for the convection boundary condition is (a) \(k \frac{d T(0)}{d x}=h_{1}\left[T(0)-T_{\infty 1}\right]\) (b) $k \frac{d T(L)}{d x}=h_{2}\left[T(L)-T_{\infty 22}\right]$ (c) $-k \frac{d T(0)}{d x}=h_{1}\left(T_{\infty 1}-T_{\infty 22}\right)(d)-k \frac{d T(L)}{d x}=h_{2}\left(T_{\infty \infty 1}-T_{\infty 22}\right)$ (e) None of them

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free