Chapter 2: Problem 62
Consider a 20 -cm-thick concrete plane wall \((k=0.77\) $\mathrm{W} / \mathrm{m} \cdot \mathrm{K})\( subjected to convection on both sides with \)T_{\infty 1}=27^{\circ} \mathrm{C}\( and \)h_{1}=5 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\( on the inside and \)T_{\infty 22}=8^{\circ} \mathrm{C}$ and \(\mathrm{h}_{2}=12 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) on the outside. Assuming constant thermal conductivity with no heat generation and negligible radiation, (a) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the wall, \((b)\) obtain a relation for the variation of temperature in the wall by solving the differential equation, and \((c)\) evaluate the temperatures at the inner and outer surfaces of the wall.