Chapter 2: Problem 61
Consider a large plane wall of thickness \(L=0.4 \mathrm{~m}\), thermal conductivity \(k=2.3 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), and surface area \(A=30 \mathrm{~m}^{2}\). The left side of the wall is maintained at a constant temperature of \(T_{1}=90^{\circ} \mathrm{C}\), while the right side loses heat by convection to the surrounding air at $T_{\infty}=25^{\circ} \mathrm{C}\( with a heat transfer coefficient of \)h=24 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Assuming constant thermal conductivity and no heat generation in the wall, \((a)\) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the wall, (b) obtain a relation for the variation of temperature in the wall by solving the differential equation, and (c) evaluate the rate of heat transfer through the wall.